Пуанкаре, Раймон
- 1 year ago
- 0
- 0
В теории динамических систем , разделе математики , отображение Пуанкаре (также отображение последования , отображение первого возвращения ) — это проекция некоторой площадки в фазовом пространстве на себя (или на другую площадку) вдоль траекторий (фазовых кривых) системы.
Рассмотрим некоторый участок поверхности в фазовом пространстве ( сечение Пуанкаре ), трансверсальный к векторному полю системы (то есть не касающийся поля; часто говорят просто трансверсаль ). Из точки на трансверсали выпустим траекторию системы. Предположим, что в какой-то момент траектория впервые пересекла трансверсаль снова; обозначим точку пересечения через . Отображение Пуанкаре точке ставит в соответствие точку первого возвращения . Если траектория, выпущенная из , никогда не возвращается на трансверсаль, то отображение Пуанкаре в этой точке не определено.
Аналогично можно определить отображение Пуанкаре (отображение последования) не только с трансверсали на себя, но и с одной трансверсали на другую.
Итерации отображения Пуанкаре с некоторой трансверсали на себя образуют динамическую систему с дискретным временем на фазовом пространстве меньшей размерности. Свойства этой системы находятся в тесной связи со свойствами исходной системы с непрерывным временем (например, неподвижные и периодические точки отображения Пуанкаре соответствуют замкнутым траекториям системы). Тем самым, устанавливается связь между векторными полями и их потоками с одной стороны и итерациями отображений — с другой. Отображение Пуанкаре является важным инструментом исследования динамических систем с непрерывным временем.