Interested Article - Параллелограмм

Параллелограмм

Параллелогра́мм ( др.-греч. παραλληλόγραμμον «параллельный» + «линия») — четырёхугольник , у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых . См. также другие варианты определения .

Частными случаями параллелограмма являются прямоугольник , квадрат и ромб .

Свойства

Противоположные стороны параллелограмма равны, а диагонали в точке пересечения делятся пополам.
Сумма углов у основания параллелограмма равна 180°
  • Противолежащие стороны параллелограмма равны.
  • Противолежащие углы параллелограмма равны.
  • Сумма углов, прилежащих к одной (любой) стороне, равна 180° (по свойству параллельных прямых).
  • Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам:
    .
  • Точка пересечения диагоналей является центром симметрии параллелограмма.
  • Параллелограмм диагональю делится на два равных треугольника.
  • Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
  • Тождество параллелограмма : сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть
— длина стороны ,
— длина стороны ,
и — длины диагоналей; тогда
Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника : учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей . У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
  • Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.

Признаки параллелограмма

Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные):

  1. У четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: .
  2. Все противоположные углы попарно равны: .
  3. У четырёхугольника без самопересечений все противоположные стороны попарно равны: .
  4. Все противоположные стороны попарно параллельны: .
  5. Диагонали делятся в точке их пересечения пополам: .
  6. Сумма расстояний между серединами противоположных сторон выпуклого четырёхугольника равна его полупериметру.
  7. Сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: .

Площадь параллелограмма

Площадь параллелограмма, выражение через высоту
Здесь приведены формулы, свойственные именно параллелограмму. См. также формулы для площади произвольных четырёхугольников .
  • Площадь параллелограмма равна произведению его основания на высоту :
, где — сторона, — высота, проведённая к этой стороне.
  • Площадь параллелограмма равна произведению длин его смежных сторон и синуса угла между ними:
где и — смежные стороны, — угол между сторонами и .
  • Также площадь параллелограмма может быть выражена через стороны и длину любой из диагоналей по формуле Герона как сумма площадей двух равных примыкающих треугольников :
где

См. также

Примечания

  1. , с. 332—333.
  2. .

Литература

  • Выгодский М. Я. Справочник по элементарной математике. — М. : АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 .

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Параллелограмм