Парадокс лжеца
- 1 year ago
- 0
- 0
Гравитацио́нный парадо́кс , или парадокс Неймана — Зелигера , — историческая космологическая проблема, вытекающая из классической теории тяготения и формулирующаяся следующим образом:
В бесконечной Вселенной с евклидовой геометрией и ненулевой средней плотностью вещества гравитационный потенциал всюду принимает бесконечное значение. |
Парадокс назван по именам впервые опубликовавших его немецких учёных К. Неймана и Г. Зелигера . Гравитационный парадокс оказался самым серьёзным затруднением теории тяготения Ньютона , и обсуждение этой темы сыграло значительную роль в осознании научным сообществом того факта, что классическая теория тяготения непригодна для решения космологических проблем . Многочисленные попытки улучшить теорию тяготения увенчались успехом в 1915 году, когда А. Эйнштейн завершил разработку общей теории относительности , в которой данный парадокс не имеет места .
Если плотность вещества ρ произвольно распределена в пространстве, то создаваемое им гравитационное поле в классической теории определяется гравитационным потенциалом φ. Для нахождения этого потенциала надо решить уравнение Пуассона :
Здесь — гравитационная постоянная . Общее решение этого уравнения записывается в виде :
(1) |
где r — расстояние между элементом объёма dV и точкой, в которой определяется потенциал φ, С — произвольная постоянная.
В 1894—1896 годах немецкие учёные К. Нейман и Г. Зелигер , независимо друг от друга, проанализировали поведение интеграла в формуле ( ) для всей бесконечной Вселенной. Выяснилось, что если средняя плотность вещества во Вселенной ненулевая, то интеграл расходится. Более того, чтобы потенциал принимал конечное значение, необходимо , чтобы средняя плотность вещества во Вселенной с ростом убывала быстрее, чем Если указанное условие нарушено, то, как показал Зелигер, в зависимости от способа перехода к пределу в интеграле действующая на произвольное тело сила тяготения может принимать любое значение, включая бесконечное .
Зелигер заключил, что с ростом масштаба во Вселенной средняя плотность вещества должна быстро убывать и в пределе стремиться к нулю. Этот вывод противоречил традиционным представлениям о бесконечности и однородности Вселенной и порождал сомнение в том, пригодна ли ньютоновская теория для исследования космологических проблем .
На рубеже XIX—XX веков были предложены несколько вариантов решения проблемы.
Проще всего предположить, что во Вселенной существует лишь конечное количество вещества. Эту гипотезу рассматривал ещё Исаак Ньютон в письме Ричарду Бентли . Анализ показал, что подобный «звёздный остров» со временем, под действием взаимовлияния звёзд, либо соединится в одно тело, либо рассеется в бесконечной пустоте . А. Эйнштейн , рассматривая принцип однородного распределения вещества в бесконечной Вселенной, писал :
Это представление несовместимо с теорией Ньютона. Больше того, последняя требует, чтобы мир имел нечто вроде центра, где плотность числа звёзд была бы максимальной, и чтобы эта плотность убывала с расстоянием от центра так, что на бесконечности мир был бы совсем пустым. Звёздный мир должен представлять собой конечный остров в бесконечном океане пространства.
Это представление не очень удовлетворительно само по себе. Оно неудовлетворительно ещё и потому, что приводит к следствию, что свет, излучаемый звёздами, а также отдельные звёзды звёздной системы должны непрерывно удаляться в бесконечность, никогда не возвращаясь и не вступая во взаимодействие с другими объектами природы. Такой мир, материя которого сконцентрирована в конечном пространстве, должен был бы медленно, но систематически опустошаться.
Иерархическая, или «фрактальная» космология , восходящая ещё к учёному XVIII века Иоганну Ламберту , явилась более изощрённой попыткой решить проблему. Ламберт в 1761 году опубликовал «Космологические письма о строении Вселенной», где предположил, что Вселенная устроена иерархично: каждая звезда с планетами образует систему первого уровня, далее эти звёзды объединяются в систему второго уровня и т. д. В 1908 году шведский астроном Карл Шарлье показал, что в иерархической модели Ламберта для устранения гравитационного парадокса достаточно предположить для каждых двух соседних уровней иерархии следующее соотношение между размерами систем и средним числом систем нижнего уровня в системе следующего уровня :
то есть размеры систем должны расти достаточно быстро. В XXI веке идеи Шарлье почти не имеют последователей, так как модель Ламберта (и фрактальная космология вообще) противоречит ряду современных наблюдательных данных, в особенности различным косвенным свидетельствам малости колебаний гравитационного потенциала в видимой вселенной .
Третья группа гипотез содержала различные модификации закона всемирного тяготения . Немецкий физик Август Фёппль предположил (1897), что во Вселенной существует вещество с отрицательной массой , компенсирующее избыток тяготения . Гипотезу о существовании вещества с отрицательной массой ещё в 1885 году выдвинул английский математик и статистик Карл Пирсон , он считал, что «минус-вещество», отталкиваясь от обычного, переместилось в отдалённые районы Вселенной, но некоторые известные звёзды с быстрым собственным движением, возможно, состоят из такого вещества . Уильям Томсон (лорд Кельвин) (1884 год) аналогичную гасящую роль отводил эфиру , который, по его мнению, притягивает только сам себя, создавая дополнительное давление .
Ряд учёных пытались исходить из необъяснимого в рамках ньютоновской теории аномального смещения перигелия Меркурия . Простейшим вариантом была «гипотеза Холла», согласно которой квадрат расстояния в формуле закона всемирного тяготения следует заменить на немного бо́льшую степень. Такая корректировка достигала сразу двух целей — гравитационный парадокс исчезал (интегралы становились конечными), а смещение перигелия Меркурия можно было объяснить, подобрав подходящий показатель степени для расстояния. Однако, как вскоре выяснилось, движение Луны не согласуется с новым законом .
Зелигер и Нейман предложили ещё одну модификацию закона всемирного тяготения:
В ней дополнительный множитель обеспечивает более быстрое, чем у Ньютона, убывание тяготения с расстоянием. Подбор коэффициента затухания позволял также объяснить смещение перигелия Меркурия, однако движение Венеры, Земли и Марса переставало соответствовать наблюдениям .
Были и другие попытки улучшить теорию гравитации, но до работ А. Эйнштейна все они были безуспешны — новые теории либо не объясняли в полной мере смещение перигелия Меркурия, либо давали ошибочные результаты для других планет .
С 1870-х годов начали появляться первые гипотезы о том, что для решения парадокса следует предположить у Вселенной неевклидову геометрию ( Шеринг , Киллинг , позднее Шварцшильд и Пуанкаре ) . Немецкий астроном склонялся к мнению, что кривизна пространства положительна, поскольку тогда объём Вселенной конечен, и наряду с гравитационным отпадает также фотометрический парадокс . Однако объяснить смещение перигелия Меркурия с помощью этой гипотезы не удалось — расчёты показали, что получается неправдоподобно большая кривизна пространства .
Ньютоновская теория тяготения, как выяснилось в начале XX века, неприменима для расчёта сильных полей тяготения. В современной физике она заменена на общую теорию относительности А. Эйнштейна (ОТО). Новая теория тяготения привела к созданию науки космологии , включающей ряд разнообразных моделей устройства мироздания . В этих моделях гравитационный парадокс не возникает, поскольку сила тяготения в ОТО есть локальное следствие неевклидовой метрики пространства-времени , и поэтому сила всегда однозначно определена и конечна .
Первую статью по релятивистской космологии опубликовал сам Эйнштейн в 1917 году, она называлась «Вопросы космологии и общая теория относительности» ( нем. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie ). В этой статье Эйнштейн сослался на гравитационный парадокс как доказательство неприменимости ньютоновской теории в космологии, и заключил: «Эти трудности, по-видимому, нельзя преодолеть, оставаясь в рамках теории Ньютона» .