Interested Article - Сварочный электрод
- 2021-03-04
- 1
Сва́рочный электро́д — металлический или неметаллический стержень из электропроводного материала, предназначенный для подвода тока к свариваемому изделию. В настоящее время выпускается более двухсот различных марок электродов , причем более половины всего выпускаемого ассортимента составляют плавящиеся электроды для ручной дуговой сварки .
Сварочные электроды делятся на плавящиеся и неплавящиеся. Неплавящиеся электроды изготовляют из тугоплавких материалов, таких как вольфрам по ГОСТ 23949-80 "Электроды вольфрамовые сварочные неплавящиеся", синтетический графит или электротехнический уголь . Плавящиеся электроды изготавливают из сварочной проволоки, которая согласно ГОСТ 2246—70 разделяется на углеродистую, легированную и высоколегированную . Поверх металлического стержня методом опрессовки под давлением наносят слой защитного покрытия. Роль покрытия заключается в металлургической обработке сварочной ванны , защите её от атмосферного воздействия и обеспечении более устойчивого горения дуги .
История
История сварочных электродов неразрывно связана с историей развития сварки и сварочных технологий. Впервые электрод был использован в экспериментах, связанных с исследованием свойств электрической дуги (в 1802 профессором В.В. Петровым). В 1882 году русский изобретатель Николай Николаевич Бенардос предложил использовать электрическую дугу, горящую между угольным электродом и металлической деталью, с целью соединения металлических кромок .
Почти одновременно с Н. Н. Бенардосом работал другой крупнейший российский изобретатель — , много сделавший для развития дуговой сварки. Он критически оценил изобретение Бенардоса и внес в него существенные усовершенствования, касающиеся в первую очередь металлургии сварки. Николай Гавриилович заменил неплавящийся угольный электрод металлическим плавящимся электродом-стержнем, сходным по химическому составу со свариваемым металлом. Другим важным достижением Славянова считается использование расплавленного металлургического флюса, защищающего сварочную ванну от окисления , выгорания металла и накопления в сварном соединении вредных примесей серы и фосфора .
В 1904 году швед Оскар Кьельберг основал в Гётеборге фирму « ESAB ». Деятельность предприятия была связана с применением сварки в судостроении. В результате собственных исследований и наблюдений О. Кьельберг изобрел технологию сварки покрытыми плавящимися электродами. Покрытие стабилизировало горение электрической дуги и защищало зону дуговой сварки. В 1906 году им был получен патент «Процесс электрической сварки и электроды для этих целей» . Именно использование покрытых плавящихся электродов дало повод к развитию и использованию сварочных технологий в различных отраслях производства.
В 1911 году англичанин А. Строменгер существенно улучшил электродное покрытие. Предложенное им покрытие состояло из асбестового шнура, пропитанного силикатом натрия . Этот шнур наматывался на металлический стержень. Поверх этого покрытия ещё наматывалась тонкая алюминиевая проволока. Такая структура электродного покрытия обеспечивала защиту сварочной ванны и металла сварного шва от атмосферного воздуха за счет образования шлака. Алюминий использовался в качестве раскислителя и обеспечивал удаление кислорода. Под названием «Квази-арк» эти электроды распространились по Европе и Америке .
В октябре 1914 года С. Джонсу был выдан британский патент на метод получения электрода, покрытие которого наносилось методом опрессовки. Металлический стержень проталкивался через фильеру одновременно с шихтой , ложившейся на стержень .
В 1917 году американские ученые О. Андрус и Д. Стреса разработали новый тип покрытия электродов . Стальной стержень был обернут бумагой, приклеенной силикатом натрия . В процессе сварки такое покрытие выделяло дым, защищая сварочную ванну от воздействия воздуха. Также было отмечено, что бумажное покрытие обеспечивало моментальное зажигание электрической дуги с первого касания и стабилизировало её горение. В 1925 году англичанин А. О. Смит использовал для улучшения качества электродного покрытия порошкообразные защитные и легирующие компоненты. В то же время французские изобретатели О. Са-разен и О. Монейрон разработали покрытие электродов, в составе которого были использованы соединения щелочных и щелочноземельных металлов : полевой шпат , мел , мрамор , сода . Благодаря низкому потенциалу ионизации таких элементов, как натрий , калий , кальций , обеспечивалось легкое возбуждение дуги и поддержание её горения .
Таким образом, за первую четверть XX века были разработаны конструкции плавящихся электродов для ручной дуговой сварки, методы их изготовления, обоснован состав покрытия. Электродные покрытия содержали специальные компоненты: газообразующие — оттесняющие воздух из зоны сварки; легирующие — улучшающие состав и структуру металла шва; шлакообразующие — защищающие расплавленный и кристаллизующийся металл от взаимодействия с газовой фазой; стабилизирующие — вещества с низким потенциалом ионизации. Дальнейшие разработки в области производства сварочных электродов были сконцентрированы на компонентах, входящих в состав покрытия и электродной проволоки, на промышленных методах производства.
Классификация сварочных электродов
Большое разнообразие электродов, а также принципов их классификации затрудняет разработку единой общепринятой системы классификации электродов. Марки электродов стандартами не регламентируются. Подразделение электродов на марки производится по техническим условиям и паспортам. Каждому типу электродов может соответствовать одна или несколько марок. Возможно то, что электрод не относится к маркам. Все сварочные электроды можно разделить на две группы, которые в свою очередь подразделяются на подгруппы:
Неметаллические сварочные электроды | Металлические сварочные электроды | ||||
Неплавящиеся | Неплавящиеся | Плавящиеся | |||
|
Покрытые | Непокрытые | |||
|
Использовались на ранних стадиях развития сварочных технологий.
Сейчас применяются в виде непрерывной проволоки для сварки в среде защитных газов. |
Классификация покрытых металлических сварочных электродов по ГОСТ 9466-75
В соответствии с ГОСТ 9466-75 электроды покрытые металлические для ручной дуговой сварки сталей и наплавки классифицируются по назначению, механическим свойствам и химическому составу наплавленного металла (типам), видам и толщине покрытий, а также некоторым сварочно-технологическим характеристикам.
Виды электродов по назначению
- для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 60 кгс/мм² (600 МПа). Обозначаются буквой У (ГОСТ 9467-75);
- для сварки легированных конструкционных сталей с временным сопротивлением разрыву свыше 60 кгс/мм² (600 МПа). Обозначаются буквой Л (ГОСТ 9467-75);
- для сварки легированных теплоустойчивых сталей. Обозначаются буквой T (ГОСТ 9467-75);
- для сварки высоколегированных сталей с особыми свойствами. Обозначаются буквой В (ГОСТ 10052-75);
- для наплавки поверхностных слоев с особыми свойствами. Обозначаются буквой H (ГОСТ 10051-75).
Вышеуказанными стандартами предусмотрено разделение электродов на типы, в соответствии с механическими свойствами и химическим составом наплавленного металла. Цифры, обозначающие каждый тип электрода — Э42, Э42А, Э50 и т. д., характеризуют гарантированное минимальное временное сопротивление разрыву в кгс/мм², а буква А — повышенные пластические свойства, вязкость и ограничения по химическому составу.
Виды электродов по толщине покрытия
По толщине покрытия электроды разделяются в зависимости от отношения D/d (D — диаметр покрытого электрода; d — диаметр стержня):
- с тонким покрытием (D/d < 1,2). Обозначаются буквой М;
- со средним покрытием (D/d < 1,45). Обозначаются буквой С;
- с толстым покрытием (D/d < 1,8). Обозначаются буквой Д;
- с особо толстым покрытием (D/d > 1,8). Обозначаются буквой Г.
ГОСТ 9466 — 75 предусматривает также три группы электродов — 1, 2, 3, характеризующиеся требованиями к качеству (точности) изготовления электродов, состоянием поверхности покрытия, а также содержанием серы и фосфора в наплавленном металле.
Виды электродов по типу покрытия
- с кислым покрытием (А);
- с основным покрытием (Б);
- с целлюлозным покрытием (Ц);
- с рутиловым покрытием (Р);
- с покрытием смешанного вида (с двойным буквенным обозначением);
- с прочими видами покрытий (П).
Таблица соответствия маркировок электродов по типу покрытия:
Тип покрытия | Обозначение по ГОСТ 9466-75 | Международное обозначение ISO |
Кислое | А | A |
Основное | Б | B |
Рутиловое | Р | R |
Целлюлозное | Ц | C |
Смешанные покрытия | ||
Кисло-рутиловое | АР | AR |
Рутилово-основное | РБ | RB |
Рутилово-целлюлозное | РЦ | RC |
Прочие (смешанные) | П | S |
Рутиловые с железным порошком | РЖ | RR |
Виды электродов по допустимым пространственным положениям сварки или наплавки
- для сварки во всех положениях с условным обозначением 1;
- для сварки во всех положениях, кроме вертикального сверху вниз — 2;
- для положений нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх — 3;
- для нижнего и нижнего в лодочку — 4.
Виды электродов по роду и полярности сварочного тока
Рекомендуемая полярность постоянного тока | Напряжение холостого хода источника переменного тока, В | Обозначение | |
---|---|---|---|
Номинальное напряжение | Предельное отклонение | ||
Обратная | - | - | 0 |
Любая | 50 | ±5 | 1 |
Прямая | 2 | ||
Обратная | 3 | ||
Любая | 70 | ±10 | 4 |
Прямая | 5 | ||
Обратная | 6 | ||
Любая | 90 | ±5 | 7 |
Прямая | 8 | ||
Обратная | 9 |
Цифрой 0 обозначают электроды, предназначенные для сварки или наплавки только на постоянном токе обратной полярности (сварочный электрод соединяется с плюсом).
Строение
Строение покрытых металлических сварочных электродов
Электроды для ручной дуговой сварки представляют собой стержни длиной, как правило, от 250 до 450 мм, изготовленные из сварочной проволоки с нанесенным на неё слоем покрытия. Один из концов электрода длиной 20–30 мм зачищен от обмазки для его крепления в .
Строение покрытого сварочного электрода
|
Основная классификация электродных покрытий:
- Стабилизирующие покрытия представляют собой материалы, содержащие элементы, легко ионизирующие сварочную дугу . Наносятся тонким слоем на стержни электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки.
- Защитные покрытия представляют собой механическую смесь различных материалов, предназначенных ограждать расплавленный металл от воздействия воздуха, стабилизировать горение дуги , легировать и рафинировать металл шва.
- Применяются также магнитные покрытия , которые наносятся на проволоку в процессе сварки за счёт электромагнитных сил, возникающих между находящейся под током электродной проволокой и ферромагнитным порошком, находящемся в бункере, через который проходит электродная проволока при полуавтоматической или автоматической сварке.
Основные виды электродных покрытий:
- Руднокислые электродные покрытия содержат окислы железа и марганца, кремнезём , большое количество ферромарганца ; для создания газовой защиты зоны сварки в покрытие вводят органические вещества ( целлюлозу , древесную муку, крахмал и пр.).
- Рутиловые электродные покрытия получают значительное применение в связи с развитием добычи минерала рутила , состоящего в основном из диоксида титана TiO 2 . В покрытия, помимо рутила , введены кремнезём , ферромарганец , карбонаты кальция или магния.
- Фтористо-кальциевые электродные покрытия состоят из карбонатов кальция и магния, плавикового шпата и ферросплавов .
- Органические электродные покрытия состоят из органических материалов, обычно из оксицеллюлозы, к которой добавлены шлакообразующие материалы, диоксид титана , силикаты и пр. и ферромарганец в качестве раскислителя и легирующей присадки.
Производство
Покрытые сварочные электроды изготавливают двумя способами:
- опрессовкой
- окунаниеми
См. также
Примечания
- ↑ . Сайт . Дата обращения: 2009. Архивировано из 13 июня 2008 года.
- . Сайт . Дата обращения: 2009. 12 марта 2012 года.
- . Сайт . Дата обращения: 2011. Архивировано из 19 ноября 2012 года.
- . Дата обращения: 2010. 12 марта 2012 года.
- . Дата обращения: 2010. 12 марта 2012 года.
- . Сайт . Дата обращения: 2009. 16 ноября 2011 года.
- ↑ . Сайт . Дата обращения: 2009. Архивировано из 6 апреля 2012 года.
- . . Дата обращения: 2009. Архивировано из 30 июля 2012 года.
- . Сайт . Дата обращения: 2009. 19 октября 2011 года.
- ↑ . Сайт . Дата обращения: 2009. Архивировано из 29 ноября 2011 года.
- .
- Дата обращения: 2009. 12 марта 2012 года.
Ссылки
- с радиоактивным изотопом торием-232 (видео)
Для улучшения этой статьи
желательно
:
|
- 2021-03-04
- 1