Редактирование РНК
- 1 year ago
- 0
- 0
Ма́лые интерфери́рующие РНК или короткие интерферирующие РНК ( англ. siRNA, small interfering RNA ) — это класс двухцепочечных РНК , с длиной в 20-25 нуклеотидов . Взаимодействие малых интерферирующих РНК с матричной РНК (мРНК) целевого гена приводит к деградации последней (в процессе РНК-интерференции ), предотвращая трансляцию мРНК на рибосомах в кодируемый ею белок . В конечном итоге результат действия малых интерферирующих РНК идентичен тому, как если бы просто снижалась экспрессия гена .
В клетке РНК-интерференция является важной частью механизмов противовирусной защиты и поддержания структуры хроматина . Молекулярные механизмы данных взаимодействий в настоящее время исследуются, в частности, была предложена гипотеза участия малых РНК в РНК-зависимом метилировании ДНК .
Малые интерферирующие РНК были открыты в 1999 году группой Дэвида Болкомба в Великобритании как компонент системы пост-транскрипционного сайленсинга генов у растений. Группа опубликовала полученные данные в журнале Science .
В 2001 году группой Томаса Тушля было показано, что синтетические малые интерферирующие РНК могут индуцировать РНК-интерференцию в клетках млекопитающих. Соответствующие результаты были опубликованы в журнале Nature . Это открытие привело к росту интереса к использованию РНК-интерференции для биомедицинских исследований и разработки лекарственных препаратов.
Малые интерферирующие РНК представляют собой короткие (как правило, длиной 21 нуклеотид) с двумя неспаренными выступающими нуклеотидами на 3'-концах.
Каждая из двух цепей РНК имеет фосфатную группу на 5'-конце и гидроксильную группу на 3'-конце. Короткие интерферирующие РНК с такой структурой образуются в результате активности фермента Dicer , субстратами которого являются длинные двухцепочечные РНК или короткие РНК, содержащие шпильки . Малые интерферирующие РНК могут быть искусственно введены в клетки для нокдауна определённого гена. При этом экспрессия практически любого гена с известной последовательностью нуклеотидов может быть целенаправленно изменена. Данное свойство делает короткие интерферирующие РНК удобным инструментом для исследования функций генов и изучения мишеней лекарственных средств.
Целенаправленное подавление экспрессии генов с помощью трансфекции экзогенной интерферирующей РНК в клетки связано с определёнными трудностями, поскольку нокдаун гена в этом случае имеет временный характер, особенно в быстро делящихся клетках. Один из способов преодоления этих трудностей состоит в том, чтобы ввести в клетку вектор , обеспечивающий экспрессию соответствующей малой интерферирующей РНК в течение более длительного периода времени . Такой вектор, как правило, содержит промотор U6 или H1, обеспечивающий транскрипцию РНК-полимеразой III , которая транскрибирует малые ядерные РНК . За промотором следуют короткая последовательность нуклеотидов, кодирующая малую интерферирующую РНК (19—29 нуклеотидов) и последовательность комплементарная ей, которые разделены между собой 4—11 нуклеотидами, которые во вторичной структуре малой интерферирующей РНК образуют петлю. В целом, соответствующий транскрипт напоминает по форме шпильку в результате комплементарного спаривания последовательностей в его начале и конце. Предполагается (хотя это не установлено достоверно), что такие шпильки затем превращаются в короткие интерферирующие РНК под действием фермента Dicer .
Двухцепочечные РНК могут усиливать экспрессию генов по механизму, называемому РНК-зависимой активацией генов ( англ. RNAa, small RNA-induced gene activation ). Показано, что двухцепочечные РНК, комплементарные промоторам генов-мишеней, вызывают активацию соответствующих генов. РНК-зависимая активация при введении синтетических двухцепочечных РНК была показана для клеток человека. Не известно, имеется ли подобная система в клетках других организмов.
Поскольку РНК-интерференция пересекается со множеством других цепочек реакций, при экспериментальном введении малых интерферирующх РНК могут включаться неспецифические эффекты. Появление двухцепочечных РНК в клетках млекопитающих может быть следствием заражения вирусом и поэтому приводит к запуску иммунного ответа. Более того, так как структурно похожие микроРНК изменяют экспрессию генов путём неполного спаривания с мишенью мРНК, введение малых интерферирующих РНК может вызвать нежелательный побочный эффект.
Введение значительного количества малых интерферирующих РНК может вызвать побочные эффекты из-за того, что включается врождённый иммунный ответ. Вероятно это происходит из-за активации протеинкиназы R, которая чувствительна к малым интерферирующим РНК, возможно также участие гена RIG I ( англ. retinoic acid inducible gene I ). Также описана индукции цитокинов через рецептор TLR 7 ( англ. toll-like receptor 7 ). Один из перспективных методов снижения побочных эффектов состоит в преобразовании малых интерферирующих РНК в микроРНК. МикроРНК синтезируются в норме, поэтому сравнительно небольшая концентрация образующихся малых интерферирующих РНК можно приводить к сравнимому по силе эффекту нокдауна генов. Это должно свести к минимуму побочные эффекты.
Сбой мишени --- это ещё одна трудность при использовании малых интерферирующих РНК как инструмента для достижения нокдауна генов. Гены с неполной комплементарностью блокируются малыми интерферирующими РНК (т. е. фактически малые интерферирующие РНК действуют как микроРНК), что приводит к трудностям в интерпретации результатов опытов и содержит риск токсичности. Однако, этого можно избежать, организуя соответствующие контрольные опыты, и создавая алгоритмы конструирования малых интерферирующих РНК, которые приводят к таким РНК, не дающим сбоев мишени. Затем можно проанализировать экспрессию генов по всему геному, например, при помощи метода микромассивов ( англ. microarray technology ), чтобы проверить отсутствие сбоев мишени и произвести дальнейшую настройку алгоритмов. В статье сотрудников лаборатории доктора Хворовой за 2006 год рассматриваются фрагменты длиной 6 или 7 пар оснований, начинающиеся с позиции 2, в малой интерферирующей РНК, соответствующей участку 3’UTR в генах, где происходит сбой мишени .
Давая возможность выключить по существу любой ген по желанию, РНК-интерференция на основе малых интерферирующих РНК вызвала огромный интерес в фундаментальной и прикладной биологии. Число широкоохватных тестов на базе РНК-интерференции для выявления важных генов в биохимических путях постоянно растет. Поскольку развитие болезней также обусловлено активностью генов, ожидается, что в некоторых случаях выключение гена при помощи малой интерферирующей РНК может давать терапевтический эффект.
Однако применение РНК-интерференции на основе малых интерферирующих РНК к животным, и в особенности к людям, сталкивается со множеством трудностей. В экспериментах было показано, что эффективность малых интерферирующих РНК оказывается различной для разных типов клеток: одни клетки легко откликаются на воздействие малых интерферирующих РНК и демонстрируют снижение экспрессии генов, в других же подобного не наблюдается, несмотря на эффективную трансфекцию . Причины этого явления пока что плохо изучены.
Результаты первой фазы испытаний двух первых терапевтических препаратов, действующих по механизму РНК-интерференции (предназначены для лечения макулодистрофии ), опубликованные в конце 2005 года, показывают, что препараты на основе малых интерферирующих РНК легко переносятся пациентами и имеют приемлемые фармакокинетические свойства .
Предварительные клинические испытания малых интерферирующих РНК, нацеленных на вирус Эбола , указывают на то, что они могут быть эффективны для постконтактной профилактики заболевания. Данный препарат позволил выжить всей группе подопытных приматов, получивших летальную дозу Заирского Эболавируса .
В 2021 году Институтом иммунологии ФМБА России было запатентовано комбинированное лекарственное средство « МИР-19 » на основе малой интерферирующей РНК предназначенное для применения при COVID-19 .
|
В другом языковом разделе
есть более полная статья
(исп.)
.
|