Interested Article - Тринитрофенол

2,4,6-Тринитрофенол ( пикриновая кислота ) — химическое соединение с химической формулой C 6 H 2 (NO 2 ) 3 OH, нитропроизводное фенола . Молекулярная масса 229,11 а. е. м. При нормальных условиях — жёлтое кристаллическое ядовитое вещество . Пикриновую кислоту и её соли ( пикраты ) используют как взрывчатые вещества , а также в аналитической химии для определения калия , натрия .

Другие названия:

  • мелинит (Melinite) во Франции
  • мелинит (Melinit) в Российской империи
  • лиддит (Lyddite) в Великобритании
  • пертит (Pertit) в Италии
  • пикриновая кислота (Picric acid, PA) в США
  • пикринит, пикринита (Picrinit, Picrinita) в Испании
  • Экразит (Ekrasit) в Австрии [ уточнить ]
  • TNF в Польше , США и др.
  • шимозе, шимоза ( яп. 下瀬火薬 симосэ каяку ) в Японии

История

Предположительно, соли пикриновой кислоты (пикраты свинца и калия) обнаружил в 1642 году Глаубер , воздействуя азотной кислотой (методы изготовления которой он разработал) на шерсть и рог .

В 1771 году () получил тринитрофенол действием азотной кислоты на природный краситель индиго . Кислотные свойства соединения обнаружены в 1783 году . При дальнейших исследованиях тринитрофенол получили при действии азотной кислотой на различные органические вещества: шёлк , природные смолы и прочие.

В 1841 (Marchand) предложил формулу C 12 H 6 N 6 O 14 (удвоенная формула тринитрофенола), а правильную формулу в 1842 году установил Лоран (Laurent), определив, что пикриновая кислота представляет собой тринитрофенол и может быть получена нитрованием фенола. Им же был выделен динитрофенол как продукт промежуточной стадии нитрования.

В 1869 году метод нитрования был усовершенствован Шмидтом и (Schmidt, Glutz), предложившими сульфирование с последующим нитрованием. Взрывчатые свойства пикратов были обнаружены ещё в 1799 году (Welter), однако до 1830-х годов это свойство не находило применения. Во второй половине XIX века пикраты (в основном калия и аммония) стали широко использоваться в военном деле. Длительное время сам тринитрофенол использовался как жёлтый краситель для шерсти и шёлка и не считался взрывоопасным веществом, в 1871 году такой авторитетный специалист, как Абель , утверждал, что только пикраты обладают взрывчатыми свойствами, а тринитрофенол нет. Однако уже в 1873 году Шпренгель (Sprengel) показал способность тринитрофенола к детонации , а в 1886 году французский инженер Тюрпен (Turpin) обнаружил, что в сплавленном или сильно спрессованном состояниях тринитрофенол детонирует, и предложил его для снаряжения боеприпасов. Это дало начало широкому применению тринитрофенола в качестве мощного бризантного взрывчатого вещества.

Первое производство бризантных артиллерийских снарядов с плавленным тринитрофенолом было налажено во Франции, а затем во многих других странах. В Российской империи производство тринитрофенола началось в 1894 году. В Российской империи в военном деле было принято французское название этого вещества «мелинит». Артиллерийский офицер С. В. Панпушко разработал боеприпасы для тяжёлых и полевых орудий. Во время испытательных стрельб произошло два разрыва лёгких 87-мм полевых пушек с человеческими жертвами. 28 ноября 1891 года при взрыве опытной бомбы, снаряженной мелинитом, погиб и сам С. Панпушко и два его помощника, вместе с ним заряжавших роковой заряд, что затормозило разработки новых вооружений в России.

Во время русско-японской войны 1904—1905 годов японская армия применяла в широких масштабах снаряды «шимозе» к 75-мм полевым и горным пушкам, в которых заряд примерно 0,8 кг тринитрофенола был особым образом из расплава отлит в виде мелкозернистой массы. В этой же войне Японией были впервые применены крупнокалиберные (до 12 дюймов) снаряды корабельной артиллерии с массой заряда тринитрофенола до 41 кг, которые не могли пробить броневую защиту, но наносили значительные разрушения на палубах , вызывали обширные пожары и показали хорошую эффективность. Русско-японская война стала апофеозом применения тринитрофенола.

Высокая активность ВВ, большое количество несчастных случаев (большое количество разрывов снарядов в стволах, да и взрыв броненосца « Микаса » многие приписывают капризу «шимозе») заставили химиков многих стран искать альтернативу. Таковым стал тринитротолуол .

Военное значение тринитрофенола сохранялось вплоть до Второй мировой войны , однако использовался он всё меньше и меньше. Уже в Первую мировой войну его использование было ограничено. В настоящее время привлекательность его из-за повышенной коррозионной активности и чувствительности по сравнению с тротилом невысока. В то же время относительная простота кустарного изготовления и высокая взрывная эффективность тринитрофенола привлекали и продолжают привлекать внимание террористов .

С осени 1944 года промышленность Германии в виду тяжёлого положения на фронтах отказывается от промышленного производства тринитротолуола в пользу тринитрофенола (А. Б. Широкорад, Бог войны Третьего рейха). По этой причине складированные и неразорвавшиеся германские боеприпасы представляют для поисковиков повышенную опасность.

Физические свойства

Чистый тринитрофенол — твёрдое вещество в виде пластинчатых или призматических кристаллов , цвет от бесцветного до жёлтого, плотность 1813 кг/м³, температура плавления 122,5 °C.

Кристаллическая система орторомбическая бипирамидальная.

Давление паров при 195 °C — 2 мм рт. ст., при 255 °C — 50 мм рт. ст. Плотность расплава при 124 °C 1589 кг/м³, при 170 °C — 1513 кг/м³. Гравиметрическая (насыпная) плотность порошка 900—1000 кг/м³.

Порошок хорошо прессуется, особенно при подогревании. При давлении прессования 4500 кг/см² плотность 1740 кг/м³, однако практически из соображений безопасности порошок прессуют при давлениях до 2000 кг/см², при этом получается плотность не выше 1630 кг/м³. При медленном охлаждении расплава можно получить твёрдое вещество с плотностью 1580—1610 кг/м³. Чем меньше примесей, тем выше плотность плавлёного тринитрофенола.

Химические свойства

Растворимость

В холодной воде растворяется слабо, около 1,1 % при +15 °C. В горячей воде растворимость значительно увеличивается до 6,5 % при 100 °C. По другим данным, при +20 °C растворяется 1,14 %, при +60 °C — 2,94 % и при 100 °C — 9,14 %. Водный раствор тринитрофенола окрашен в интенсивный желтый цвет благодаря присутствию аниона . Неионизированная молекула в безводных растворах цвета не имеет (например, в петролейном эфире ). В присутствии сильных кислот раствор также не имеет окраски, это свойство позволяет использовать тринитрофенол в качестве кислотно-основного индикатора .

В этиловом спирте и диэтиловом эфире растворимость относительно высока. В 100 г спирта при +20 °C растворяется 6,23 г пикриновой кислоты, а при температуре кипения — 66,2 г. При +13 °C в 1 л безводного эфира растворяется 10,8 г пикриновой кислоты; при содержании в эфире 0,8 % воды растворяется 36,8 г, а присодержании 1 % воды — 40 г.
Растворяется в метиловом спирте , глицерине , хлороформе , сероуглероде , ацетоне и особенно хорошо в бензоле . В 100 г бензола растворяется 3,7 г при +5 °C, 7,29 г — при +15 °C, 9,55 г — при +20 °C и 96,77 г — при +75 °C.

В смесях серной кислоты и воды растворимость заметно возрастает при концентрации кислоты выше 70 % и при увеличении температуры. При температуре +18 °C растворимость в безводной серной кислоте 10,1 г/100 мл кислоты, а при +80 °C — 25,8 г/100 мл кислоты. При разбавлении раствора в серной кислоте тринитрофенол выпадает в осадок .

Эвтектические смеси

Тринитрофенол образует со многими веществами эвтектические смеси, что широко использовалось при снаряжении боеприпасов, поскольку температура плавления чистого тринитрофенола 122,5 °C создаёт значительные технологические сложности. Наиболее привлекательными с практической точки зрения являются смеси с другими нитросоединениями:

Взаимодействие с металлами

Тринитрофенол достаточно сильная кислота, способная к обменным реакциям с образованием солей металлов ( пикратов ). Наиболее часто встречаются:

Все пикраты — твёрдые кристаллические вещества, обладающие значительно более высокой чувствительностью , чем тринитрофенол. Это требует особого внимания к применению металлов и металлическим загрязнениям при его производстве. Прямое образование пикратов в среде серной кислоты не происходит, основную опасность представляют примеси в промывочной воде и материалы, с которыми контактирует очищенный тринитрофенол. Из-за повышенной чувствительности пикратов, при изготовлении боеприпасов требуются специальные меры по изоляции заряда от металлической оболочки.

Другие свойства

C 6 H 2 ( NO 2 ) 3 OH ( NH 4 ) 2 S 2 O 3 + CO 2 + HNO 3 + HCN {\displaystyle {\ce {C6H2(NO2)3OH -> (NH4)2S2O3 + CO2 + HNO3 + HCN}}}

C 6 H 2 ( NO 2 ) 3 OH NH 3 + HCN + HNO 2 {\displaystyle {\ce {C6H2(NO2)3OH -> NH3 + HCN + HNO2}}}

C 6 H 2 ( NO 2 ) 3 OH + 11 HOCl = 3 CCl 3 NO 2 + 3 CO 2 + 6 H 2 O + 2 HCl {\displaystyle {\ce {C6H2(NO2)3OH + 11HOCl = 3CCl3NO2 + 3 CO2 + 6H2O + 2HCl}}}

Взрывчатые свойства

Основные характеристики

  • Реакция разложения
2 C 6 H 3 N 3 O 7 C + 11 CO + 3 N 2 + 3 H 2 O {\displaystyle {\ce {2C6H3N3O7 -> C + 11CO + 3N2 + 3H2O}}} [ источник не указан 2806 дней ]
2 C 6 H 2 ( NO 2 ) 3 OH = CO 2 + C + 10 CO + 2 H 2 O + H 2 + 3 N 2 {\displaystyle {\ce {2C6H2(NO2)3OH = CO2 + C + 10 CO +2 H2O + H2 + 3 N2}}}
  • в замкнутой бомбе: 71,05 % CO, 3,42 % CO 2 , 0,34 % O 2 , 1,02 % CH 4 , 13,8 % H 2 , 21,1 % N 2
  • Кислородный баланс при окислении до CO 2 : −45 %
  • Расчётные характеристики для разных плотностей:
Показатель При плотности 1,76 г/см³ При плотности 1,00 г/см³
Состав продуктов взрыва
CO 2 2,661 1,310
CO 0,179 2,970
H 2 O (г) 1,499 1,409
N 2 1,500 1,496
C (тв) 3,160 1,713
H 2 - 0,065
NH 3 - 0,008
CH 4 - 0,006
Скорость детонации , м/с 7680 5545
Давление детонации , кбар 265 88
Теплота взрыва , ккал/г 1,27 1,02
Объём продуктов взрыва, см³/г 0,423 0,714
  • Скорость детонации зависит от плотности:
Плотность, г/см³ Скорость детонации, м/с
0,97 4965
1,32 6190
1,41 6510
1,62 7200
1,70 7480

Зависимость скорости детонации D от плотности ρ довольно точно описывается уравнением Кука (Cook):

D[м/с] = 5255 + 3045 (ρ[г/см³] — 1).

Размер зёрен, мм Плотность, г/см³ Критический диаметр, мм
0,1—0,75 0,95 9,0
менее 0,1 0,95 5,5
0,01—0,05 0,8 2,1—2,3
0,05—0,07 0,7 3,6—3,7
  • Фугасность в свинцовом блоке 310 мл (тротил 285 мл, гексоген 470)
  • Бризантность по обжатию свинцового столбика 17 мм (тротил 16 мм, гексоген — 24)
  • Чувствительность в сплавленном состоянии ниже, чем в порошке. В присутствии пикратов чувствительность значительно возрастает.
  • Чувствительность к удару по сравнению с тротилом по одним данным ниже, а по другим — выше, в зависимости от условий испытаний. При испытании грузом 10 кг и высотой падения 25 см частость взрывов 24—32 % (тротил 4—8 %, гексоген 79—80 %, тэн 100 %)
  • При трении между твёрдыми материалами (сталь, чугун) порошок детонирует, между цветными металлами детонация не возникает.
  • При простреле свободно насыпанного порошка винтовочной пулей воспламеняется.
  • При простреле замкнутых оболочек с плавленным тринитрофенолом может быть выгорание, частичная или полная детонация в зависимости от характера оболочки и заряда. Чем прочнее оболочка, тем вероятнее детонация.
  • Чувствительность к нагреву:
Температура, °C Задержка до взрыва, сек.
350 1,5
315 5,5
277 26,3
267 50,3
260 не детонирует

Инициирование взрыва

Детонирует от капсюля-детонатора . Восприимчивость снижается с возрастанием плотности прессованного и ещё ниже у плавленного тринитрофенола:

  • при плотности 1580 кг/м³ (давление прессования 1500 кг/см²) детонирует от капсюля с 0,4 г гремучей ртути
  • при плотности 1680 кг/м³ (давление прессования 2900 кг/см²) необходим капсюль с 0,65 г гремучей ртути
  • для плавленного необходим капсюль с 3 г гремучей ртути, но на практике такими не пользуются и применяется промежуточный детонатор.
  • для различных условий масса азида свинца для инициирования 0,03-0,24 г

Свойства при нагревании

При нагревании в различных условиях:

  • при 122,5 °C плавится без разложения, в жидком состоянии жёлто-бурого цвета;
  • при медленном нагревании слабо возгоняется ;
  • в свободном состоянии при 183 °C большой индукционный период до начала разложения, при уменьшении объёма для паров индукционный период уменьшается;
  • при 230 °C индукционный период до начала разложения отсутствует;
  • температура воспламенения 300—310 °C, в свободном состоянии сгорает без вспышки. Горит спокойно, сильно коптящим пламенем, с плавлением. Даже большие массы (порядка 100 кг) могут спокойно гореть, если при этом расплав свободно растекается;
  • при быстром нагревании в замкнутой оболочке до 300 °C взрывается.

Опасность в производстве и применении

  • Взрыв пикриновой кислоты в 1887 году на фабрике в Манчестере был вызван образованием пикратов во время пожара. Расплавленная от пламени пикриновая кислота попала на литопон, в результате чего образовался пикрат свинца. Он послужил детонатором, от которого взорвалась пикриновая кислота.
  • Пожар и взрыв в 1900 году на фабрике в Хаддерсфилде (Hudders-field) был вызван образованием пикрата железа на паровых трубах. При ремонте от удара пикрат железа загорелся, и пламя распространилось на сушилку пикриновой кислоты.
  • 6 декабря 1917 года в гавани канадского города Галифакс произошёл мощнейший взрыв корабля "Монблан" , который среди всего прочего перевозил 2300 тонн сухой и жидкой пикриновой кислоты. В результате взрыва Галифакс был практически полностью разрушен. 1963 человека погибли, 9 тысяч получили ранения, 2 тысячи человек пропали без вести, а общий ущерб от взрыва оценивается в 35 миллионов канадских долларов.
  • На одной из фабрик во Франции вдоль железнодорожных путей образовались полосы пыли пикриновой кислоты. Значительное содержание кальция во влажной почве повлекло образование пикрата кальция. В жаркую сухую погоду он высох и вызвал пожар вдоль всех путей, по которым перемещали пикриновую кислоту.

Получение

Прямое нитрование фенола

Тринитрофенол может быть получен прямым нитрованием фенола в концентрированной азотной кислоте:

C 6 H 5 OH + 3 HNO 3 = C 6 H 2 ( NO 2 ) 3 OH + 3 H 2 O {\displaystyle {\ce {C6H5OH + 3HNO3 = C6H2(NO2)3OH +3H2O}}}

При этом идёт сильный разогрев, который приводит к разрушению и осмолению фенола, образованию различных побочных продуктов. Выход тринитрофенола низкий, в процессе происходит значительное разбавление кислоты. Тем не менее, этот способ был основным в период до и во время Первой мировой войны. Процесс осуществлялся в керамических горшках и обычно без перемешивания, поскольку растворы кислот корродировали металлы и загрязняли готовый продукт пикратами. Регулирование температуры также было затруднительно. Для преодоления недостатков этого способа были разработаны и нашли применение в производстве другие способы.

Синтез из фенола через фенолсульфокислоты

Из анисовой кислоты, содержащейся в анисовом , фенхелевом и ряде других эфирных масел, перегонкой выделяется анизол (масла Gaultheria procumbens, т. е. салицилово-метилового эфира ). Далее,

Фенол сильно окисляется (нитрирующей смесью), поэтому вначале его сульфируют, а потом нитруют азотной кислотой при нагревании. Следом за этим осуществляется электрофильное ипсо-замещение сульфогруппы на нитрогруппу.


Этим способом тринитрофенол получается из фенола последовательной обработкой серной и азотной кислотами. На первой стадии происходит сульфирование фенола до моно- и дисульфокислот, на второй стадии идёт нитрование сфенолсульфокислот с отщеплением сульфогрупп и образованием тринитрофенола:

Процесс также проводился в керамических горшках, стадии проводились последовательно. По сравнению с прямым нитрованием этот способ имеет как преимущества (меньшая опасность, отсутствие продуктов разложения фенола, более высокий выход), так и недостатки (значительно больший расход кислот). У этого способа много технологических разновидностей, которые можно объединить в две группы:

  • нитрование в относительно слабых растворах кислот с применением избытка серной кислоты на первой стадии, последующего разбавления и обработкой 65%-ной азотной кислотой (обычный способ) или натриевой селитрой («французский способ»).
  • нитрование в относительно крепких растворах кислот (метод Каста и его вариации). Крепкие кислоты позволяли использовать металлические аппараты с регулированием температуры и перемешиванием. По методу Каста сульфирование фенола проводилось в 20%-ном олеуме при соотношении 1:4 при температуре 90—100 °C в течение 5 часов, при этом образовывался дисульфофенол. Реакционная масса разбавлялась серной кислотой с плотностью 1,84 г/см³ (95,6 %), а затем проводилась нитрация азотной кислотой с плотностью 1,46 г/см³ (80 %) либо серно-азотной смесью.

Получение из бензола через хлорбензол

Процесс проводится в несколько стадий, некоторые оказались достаточно сложны в производстве и метод долго отрабатывался и получил распространение в период и после Первой мировой войны.

1. Хлорирование бензола до монохлорбензола :

C 6 H 6 + Cl 2 C 6 H 5 Cl + HCl {\displaystyle {\ce {C6H6 + Cl2 -> C6H5Cl + HCl}}} .

2. Нитрования монохлорбензола до динитрохлорбензола смесью серной и азотной кислот:

C 6 H 5 Cl + 2 HNO 3 C 6 H 3 ( NO 2 ) 2 Cl + 2 H 2 O {\displaystyle {\ce {C6H5Cl + 2HNO3 -> C6H3(NO2)2Cl + 2 H2O}}} .

3. Обработка динитрохлорбензола каустической содой (гидроокисью натрия) с получением :

C 6 H 3 ( NO 2 ) 2 Cl + 2 NaOH C 6 H 3 ( NO 2 ) 2 ONa + NaCl + H 2 O {\displaystyle {\ce {C6H3(NO2)2Cl + 2 NaOH -> C6H3(NO2)2ONa + NaCl + H2O}}} .

4. Омыление динитрофенолята натрия серной кислотой с получением динитрофенола:

2 C 6 H 3 ( NO 2 ) 2 ONa + H 2 SO 4 2 C 6 H 3 ( NO 2 ) 2 OH + Na 2 SO 4 {\displaystyle {\ce {2 C6H3(NO2)2ONa + H2SO4 -> 2 C6H3(NO2)2OH + Na2SO4}}} .

5. Получение тринитрофенола обработкой динитрофенола смесью серной и азотной кислот:

C 6 H 3 ( NO 2 ) 2 OH + HNO 3 C 6 H 2 ( NO 2 ) 3 OH + H 2 O {\displaystyle {\ce {C6H3(NO2)2OH + HNO3 -> C6H2(NO2)3OH + H2O}}} .

Практический выход тринитрофенола 1,6 тонны на 1 тонну бензола (54 % от теоретического). Недостаток способа — большие отходы растворов соляной кислоты.

Применение

  • Промежуточный продукт в производстве красителей . Им красили кожу, поскольку способен реагировать с белками в коже, давая темно-коричневый цвет.
  • Катализатор реакций полимеризации (например,).
  • компонент окрашивающего раствора Ван Гизона ( Van Gieson ) в гистологии .
  • Травитель в металловедении (ГОСТ 2567-54). Например, для выявления субструктуры феррита применяется травитель (4 г пикриновой кислоты; 96 мл этилового спирта) . В металлургии, 4% пикриновая кислота в этаноле называется «picral» и широко использовалась в оптической металлографии, чтобы выявить границы зерен в ферритных сталях. Из-за опасности была заменена другими химическими травителями. Тем не менее, она все еще используется для травления магниевых сплавов, таких как AZ31.
  • Антисептическое средство .
  • общеалкалоидный осадительный реактив.
  • Пигмент для пометки лабораторных животных .

Хранение

Рекомендуется хранить в воде, поскольку тринитрофенол чувствителен к ударам и трению. Пикриновая кислота является особенно опасной, поскольку она является летучей и медленно сублимируется даже при комнатной температуре. Со временем накопление пикратов на открытых металлических поверхностях может представлять опасность взрыва.

Экология

Тринитрофенол имеет очень горький вкус . Пыль раздражает дыхательные пути. Продолжительное вдыхание и контакт со слизистыми и кожей ведут к поражению почек , кожным болезням. Слизистые оболочки глаз приобретают характерный жёлтый цвет.

Дополнительно

Примечания

  1. — С. 11.
  2. Peter Woulfe (1771) от 22 декабря 2016 на Wayback Machine . Philosophical Transactions of the Royal Society of London 61 : 114—130. See pages 127—130: «A method of dying wool and silk, of a yellow colour, with indigo; and also with several other blue and red colouring substances.» and «Receipt for making the yellow dye.» — where Woulfe treats indigo with nitric acid («acid of nitre»).
  3. (неопр.) . Дата обращения: 4 января 2018. 5 января 2018 года.
  4. D`Ans, Ellen Lax. Taschenbuch für Chemiker und Physiker, Band II, Springer-Verlag 1964.
  5. A. Bernthsen: Kurzes Lehrbuch der organischen Chemie. Friedr. Vieweg & Sohn, Braunschweig 1914.
  6. Брокгауз и Ефрон. Брокгауз и Евфрон. Энциклопедический словарь, 2012..
  7. М.Беккерт, Х.Клемм. Справочник по металлографическому травлению..

Литература

  1. // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб. , 1890—1907.
  2. Справочник по производству взрывчатых веществ./ Под ред. И. В. Лебедева. — ОНТИ , Госхимтехиздат . — М., Л. — 1934. — с. 146—170.
  3. Fedoroff, Basil T. et al Enciclopedia of Explosives and Related Items, vol.1—7. — Dover, New Jersey: Picatinny Arsenal. — 1960—1975. — P285-P295.
  4. Волков И. Подрывные средства при устройстве заграждений. — М.: Государственное военное издательство , 1933.

Same as Тринитрофенол