Interested Article - Галилео (космический аппарат)

«Галилео» ( англ. Galileo ) — автоматический космический аппарат (АМС) НАСА , созданный для исследования Юпитера и его спутников . Назван в честь Галилео Галилея , открывшего четыре крупнейших спутника Юпитера в 1610 году.

Аппарат был запущен в 1989 году , в 1995 году вышел на орбиту Юпитера, проработав там до 2003 года . Это был первый аппарат, вышедший на орбиту Юпитера, изучавший планету длительное время, а также сбросивший в её атмосферу спускаемый зонд . Станция передала свыше 30 гигабайт информации, включая 14 тысяч изображений планеты и спутников, а также уникальную информацию об атмосфере Юпитера.

История

Проектирование аппарата началось ещё в 1977 году, когда было принято решение об изучении атмосферы Юпитера с помощью спускаемого аппарата . Целью миссии было изучение атмосферы Юпитера, спутников и их строения, магнитосферы , передача изображений планеты и её спутников и пр.

Предполагалось, что «Галилео» будет выведен на земную орбиту с помощью « Спейс шаттла », а затем разогнан с помощью ускорителя (разгонного блока) « Центавр » в сторону Юпитера. Однако после взрыва шаттла «Челленджер» (1986), доставка разгонного блока «Центавр» на орбиту с помощью «Спейс шаттла» была запрещена. Тем не менее, позже «Галилео» был выведен с помощью шаттла « Атлантис » и разгонного блока IUS .

После длительного анализа была найдена траектория полёта, значительно экономившая топливо и позволявшая обойтись без разгонного блока «Центавр», но значительно увеличивавшая время полёта. Эта траектория, которую назвали VEEGA (Venus-Earth-Earth Gravity Assist), использовала ряд гравитационных манёвров в гравиполях Венеры и Земли.

В результате, аппарат полетел сначала к Венере и два раза прошёл мимо Земли , прежде чем выйти на траекторию к Юпитеру, а длительность полёта до планеты составила почти 6 лет. В результате «Галилео» провёл исследования Венеры и двух астероидов . Из-за изменения первоначальной траектории аппарату потребовалась дополнительная солнцезащита. Кроме того, поскольку вблизи Солнца аппарат должен был быть повёрнут определённым образом, чтобы находиться в тени солнцезащиты, то использование основной антенны было невозможно. Поэтому решено было не раскрывать её, пока аппарат не отойдёт от Солнца на безопасное расстояние, а для поддержания связи была установлена дополнительная антенна (маломощная). Но основная антенна впоследствии так и не раскрылась.

Расходы на основную миссию составили 1,35 млрд долларов , в том числе 892 млн на разработку самого космического аппарата . Суммарные расходы на миссию «Галилео» составили 1,5 млрд долл.

Основные события :

Предполагалось, что после прибытия к Юпитеру «Галилео» проработает два года, переходя с одной орбиты на другую с целью сближения с каждым из крупных спутников. Всего было разработано 11 орбит. В действительности «Галилео» «освоил» гораздо большее число орбит, сделав 35 витков вокруг Юпитера в течение 8 лет.

Основная миссия завершилась 14 декабря 1997 года, за ней последовали расширенные миссии Europa Mission (2 года, 8 орбит, с облетами Каллисто и Ио ) и Millennium Mission (1 год, облёты 4 спутников планеты) .

  • 21 сентября 2003 года, после 14 лет полёта и 8 лет исследований системы Юпитера, миссия «Галилео» была завершена . Аппарат был послан в атмосферу Юпитера со скоростью около 50 км/с с целью избежать возможности занесения микроорганизмов с Земли на спутники Юпитера; он расплавился в верхних слоях атмосферы.

Конструкция

Схема
Схема

Аппарат высотой 5 метров весил 2223 кг, в том числе 118 кг научного оборудования, 339 кг — спускаемый аппарат, 925 кг топлива . Электроэнергетическая установка состояла из двух радиоизотопных элементов начальной мощностью около 570 Вт (490 ватт при прибытии к Юпитеру) (солнечные батареи не применялись ввиду большого расстояния от Солнца ).

На аппарате было установлено 4 антенны — основная, маломощная (низкочастотная), приёмная для связи со спускаемым аппаратом и плазменно-волновая (в качестве научного инструмента) . Основная антенна не раскрылась, и связь с Землёй осуществлялась с помощью маломощной антенны . Скорость связи составила 160 бит/с вместо 134 Кбит/с . Были разработаны методы сжатия информации (включая обрезание тёмного космического фона снимков), однако качество некоторых снимков пришлось уменьшить. Нагрузка на основной компьютер резко возросла, и частично алгоритмы сжатия выполнялись на компьютере, ответственном за систему ориентации «Галилео» . Ленточное устройство хранения информации имело ёмкость 900 мегабит, однако с ним также возникли проблемы.

Аппарат был оснащён ракетным двигателем тягой в 400 ньютонов (сделанным в ФРГ ) и 12 малыми двигателями ориентации по 10 Н. Торможение при заходе на юпитерианскую орбиту осуществлялось с помощью основного двигателя, а переходы с одной орбиты на другую, как правило, с помощью двигателей ориентации, хотя в двух переходах использовался и основной двигатель.

Научные приборы

«Галилео» нёс 11 научных приборов, и ещё семь находились на спускаемом зонде .

Аппарат был оборудован фотокамерой , дающей изображения 800х800 пикселей . Камера сделана по принципу телескопа - рефлектора , работала с помощью кремниевых сенсоров и была оборудована различными фильтрами для съёмки в том или ином диапазоне. Спектральный диапазон камеры составлял от 400 до 1100 нанометров (видимый диапазон 400—700 нм). Радиационную защиту камеры выполняло 1-сантиметровое танталовое покрытие. Разрешение камеры, установленной на «Галилео», в 20 раз превышало показатель камер « Вояджеров » [ уточнить ] , для некоторых снимков — до 1000 раз.

Спектрометр для картирования в ближней инфракрасной области ( - Near-Infrared Mapping Spectrometer) позволял получать картинку высокого разрешения в инфракрасном диапазоне. С его помощью можно было составлять «температурные карты », делать выводы о химическом составе поверхности спутников Юпитера, а также определять тепловые и химические характеристики атмосферы планеты , включая внутренние слои. Диапазон волн, регистрируемых NIMS, составлял от 700 до 5 200 нм.

Фотополяриметр был призван измерять интенсивность и поляризацию света , отражённого/рассеянного от Юпитера и поверхности его спутников. Прибор одновременно выполнял функции поляриметра , фотометра и радиометра. С помощью фотополяриметра делались оценки, касающиеся как состава и структуры атмосферы , так и потоков теплового и отражённого излучения. Поляриметр регистрировал электромагнитные волны длиной до 110 нм.

Ультрафиолетовый спектрометр работал в диапазоне волн от 54 до 128 нанометров, а дополнительный ультрафиолетовый спектрометр — от 113 до 438 нанометров. С помощью этих приборов определялись характеристики атмосферных газов, полярных сияний , атмосферных свечений и ионизированной плазмы вокруг Юпитера и Ио. Кроме того, ультрафиолетовые спектрометры позволяли определять физическое состояние веществ на поверхности спутников: иней, лёд, пескообразная субстанция и т. п.

Ряд приборов (детектор частиц высоких энергий и др.) использовался, главным образом, для изучения плазмы , входящей в магнитосферу Юпитера. Детектор пылевых частиц регистрировал частицы массой от 10 −7 до 10 −16 грамма в космическом пространстве и на орбите Юпитера. Проводились также небесномеханические и радиоэксперименты (по прохождению радиосигнала через ионосферу и атмосферу).

Спускаемый аппарат

Спускаемый аппарат массой 339 кг и размером около метра был оборудован парашютной системой , радиопередатчиком для связи с «Галилео» и семью научными приборами. На нём не было приёмной антенны и собственных двигателей . Литий-серная батарея обеспечивала до 730 Вт·ч энергии .

В комплект научных приборов общей массой 30 кг входили:

  • прибор для определения структуры атмосферы (измерение температуры, давления и плотности в течение спуска);
  • масс-спектрометр (определение химического состава атмосферы);
  • нефелометр (изучение структуры облаков и характера составляющих их частиц);
  • прибор для регистрации молний, измерения радиоэмиссий и регистрации заряженных частиц;
  • прибор для точного измерения доли гелия в атмосфере;
  • прибор для регистрации потоков излучения и энергии в атмосфере;
  • использование радиопередатчика для измерения скорости ветра по .

Научные исследования

Мозаичное изображение астероида Гаспра
Астероид Ида со спутником Дактиль

Находясь в поясе астероидов, «Галилео» сблизился с астероидом Гаспра и послал на Землю первые снимки, сделанные с близкого расстояния. Около года спустя «Галилео» прошёл мимо астероида Ида и обнаружил у него спутник, названный Дактилем.

В июле 1994 года на поверхность Юпитера упала комета Шумейкеров — Леви 9 . Точки падения фрагментов находились в южном полушарии Юпитера, на противоположном по отношению к Земле полушарии, поэтому сами моменты падения визуально наблюдались только аппаратом «Галилео», находившимся на расстоянии 1,6 а. е. от Юпитера.

В декабре 1995 года спускаемый аппарат вошёл в атмосферу Юпитера . Зонд проработал в атмосфере примерно в течение часа, опустившись на глубину 130 км. Согласно измерениям, внешний уровень облаков характеризовался давлением в 1,6 атмосферы и температурой −80° С; на глубине 130 км — 24 атмосферы, +150 °C. Плотность облаков оказалась ниже ожидавшейся, предполагаемый слой облаков из водяного пара отсутствовал.

«Галилео» подробно исследовал динамику атмосферы Юпитера и другие параметры планеты. В частности, он обнаружил, что атмосфера Юпитера имеет «мокрые» и «сухие» области. В некоторых «сухих пятнах» содержание водяного пара было в 100 раз меньше, чем в атмосфере в целом. Эти «сухие пятна» могли увеличиваться и уменьшаться, однако они постоянно оказывались на одних и тех же местах, что говорит о системности циркуляции атмосферы Юпитера. «Галилео» зарегистрировал многочисленные грозы с молниями в 1000 раз мощнее земных. Передал множество снимков Большого Красного Пятна — гигантского шторма (размером превышающего диаметр Земли), который наблюдают уже более 300 лет. «Галилео» также обнаружил «горячие пятна» вдоль экватора. По-видимому, в этих местах слой внешних облаков тонок, и можно видеть более горячие внутренние области.

Благодаря данным «Галилео» были построены более точные модели процессов, происходящих в атмосфере Юпитера.

Большое значение имели исследования спутников Юпитера . За время своего пребывания на орбите Юпитера «Галилео» проходил рекордно близко к спутникам Юпитера: Европа — 201 км ( 16 декабря 1997) , Каллисто — 138 км ( 25 мая 2001 ), Ио — 102 км ( 17 января 2002 ), Амальтея 160 км ( 5 ноября 2002) .

Было получено множество новых данных и подробные снимки поверхности спутников. Было установлено, что Ио обладает собственным магнитным полем , подтверждена теория о наличии океана жидкой воды под поверхностью Европы , высказаны гипотезы о наличии жидкой воды в недрах Ганимеда и Каллисто . Также были определены необычные характеристики Амальтеи .

Снимки спутников Юпитера, сделанные «Галилео»
Ио
Европа
Ганимед
Каллисто

В массовой культуре

Аппарату была посвящена песня Пола Мадзолини «Tears for Galileo», а также группы NaviBand – Галилео (Два человека) [ источник не указан 981 день ] .

См. также

Примечания

  1. (англ.) . NASA Facts . JPL. Дата обращения: 11 декабря 2015. 10 июля 2012 года.
  2. (англ.) . JPL (15 сентября 2003). Дата обращения: 11 декабря 2015. 5 марта 2016 года.
  3. . DESCANSO Design and Performance Summary Series . JPL (июль 2002). Дата обращения: 11 декабря 2015. 20 сентября 2020 года.
  4. — С. 3.
  5. (англ.) . JPL (декабрь 1995). Дата обращения: 11 декабря 2015. 4 марта 2016 года.
  6. (англ.) . NASA SSE. Дата обращения: 11 декабря 2015. Архивировано из 26 ноября 2015 года.
  7. (англ.) . Galileo at Jupiter 6. NASA JPL (1999). — «Closest Approach to Europa 201 km on December 16, 1997». Дата обращения: 11 декабря 2015. Архивировано из 8 марта 2016 года.

Литература

  • Michael Meltzer. (англ.) . NASA SP-2007-4231 . NASA History Division (2007). Дата обращения: 11 декабря 2015.

Ссылки

  • от 10 декабря 2015 на Wayback Machine - Страница миссии «Галилео» на сайте НАСА (англ.)
  • - Страница миссии «Галилео» на сайте JPL (англ.)
  • / Проект "Исследование Солнечной системы"
  • // "Земля и Вселенная" №3, 2004
Источник —

Same as Галилео (космический аппарат)