Interested Article - Формулы векторного анализа

Обозначения

Линейность

Для любого числа α {\displaystyle \alpha } :

( α ϕ + ψ ) = α ϕ + ψ {\displaystyle \ \nabla (\alpha \phi +\psi)=\alpha \nabla \phi +\nabla \psi } g r a d ( α ϕ + ψ ) = α g r a d ϕ + g r a d ψ {\displaystyle \ \mathbf {grad} (\alpha \phi +\psi)=\alpha \ \mathbf {grad} \ \phi +\mathbf {grad} \ \psi }
( α A + B ) = α A + B {\displaystyle \ \nabla \cdot (\alpha \mathbf {A} +\mathbf {B})=\alpha \nabla \cdot \mathbf {A} +\nabla \cdot \mathbf {B} } d i v ( α A + B ) = α d i v A + d i v B {\displaystyle \ \mathbf {div} \ (\alpha \mathbf {A} +\mathbf {B})=\alpha \ \mathbf {div} \ \mathbf {A} +\mathbf {div} \ \mathbf {B} }
× ( α A + B ) = α × A + × B {\displaystyle \ \nabla \times (\alpha \mathbf {A} +\mathbf {B})=\alpha \nabla \times \mathbf {A} +\nabla \times \mathbf {B} } r o t ( α A + B ) = α r o t A + r o t B {\displaystyle \ \mathbf {rot} (\alpha \mathbf {A} +\mathbf {B})=\alpha \ \mathbf {rot} \ \mathbf {A} +\mathbf {rot} \ \mathbf {B} }

Операторы второго порядка

× ( ψ ) = 0 {\displaystyle \ \nabla \times (\nabla \psi)=0} r o t ( g r a d ψ ) = 0 {\displaystyle \ \mathbf {rot} (\mathbf {grad} \ \psi)=0}
( × A ) = 0 {\displaystyle \ \nabla \cdot (\nabla \times \mathbf {A})=0} d i v ( r o t A ) = 0 {\displaystyle \ \mathbf {div} \ (\mathbf {rot} \ \mathbf {A})=0}
Δ ψ = ( ψ ) = 2 ψ {\displaystyle \ \Delta \ \psi =\nabla \cdot (\nabla \psi)=\nabla ^{2}\psi } Δ ψ = d i v ( g r a d ψ ) {\displaystyle \ \Delta \ \psi =\mathbf {div} \ (\mathbf {grad} \ \psi)}
× × A = ( A ) 2 A {\displaystyle \ \nabla \times \nabla \times \mathbf {A} =\nabla (\nabla \cdot \mathbf {A})-\nabla ^{2}\mathbf {A} } r o t ( r o t A ) = g r a d ( d i v A ) Δ A {\displaystyle \ \mathbf {rot} \ (\mathbf {rot} \ \mathbf {A})=\mathbf {grad} \ (\mathbf {div} \ \mathbf {A})-\Delta \mathbf {A} }

Дифференцирование произведений полей

( ψ A ) = A ψ + ψ A {\displaystyle \nabla \cdot (\psi \mathbf {A})=\mathbf {A} \cdot \nabla \psi +\psi \nabla \cdot \mathbf {A} } d i v ( ψ A ) = A g r a d ψ + ψ d i v A {\displaystyle \mathbf {div} (\psi \mathbf {A})=\mathbf {A} \cdot \mathbf {grad} \psi +\psi \ \mathbf {div} \mathbf {A} }
× ( ψ A ) = ψ × A + ψ × A {\displaystyle \nabla \times (\psi \mathbf {A})=\nabla \psi \times \mathbf {A} +\psi \nabla \times \mathbf {A} } r o t ( ψ A ) = g r a d ψ × A + ψ r o t A {\displaystyle \mathbf {rot} (\psi \mathbf {A})=\mathbf {grad} \psi \times \mathbf {A} +\psi \ \mathbf {rot} \mathbf {A} }
( A B ) = ( A ) B + ( B ) A + {\displaystyle \nabla (\mathbf {A} \cdot \mathbf {B})=(\mathbf {A} \cdot \nabla)\mathbf {B} +(\mathbf {B} \cdot \nabla)\mathbf {A} +}

+ A × ( × B ) + B × ( × A ) {\displaystyle +\mathbf {A} \times (\nabla \times \mathbf {B})+\mathbf {B} \times (\nabla \times \mathbf {A})}

g r a d ( A B ) = ( A ) B + ( B ) A + {\displaystyle \ \mathbf {grad} (\mathbf {A} \cdot \mathbf {B})=(\mathbf {A} \cdot \nabla)\mathbf {B} +(\mathbf {B} \cdot \nabla)\mathbf {A} +}

+ A × r o t B + B × r o t A {\displaystyle +\mathbf {A} \times \mathbf {rot} \mathbf {B} +\mathbf {B} \times \mathbf {rot} \mathbf {A} }

1 2 A 2 = A × ( × A ) + ( A ) A {\displaystyle {\frac {1}{2}}\nabla A^{2}=\mathbf {A} \times (\nabla \times \mathbf {A})+(\mathbf {A} \cdot \nabla)\mathbf {A} } 1 2 g r a d A 2 = A × ( r o t A ) + ( A ) A {\displaystyle {\frac {1}{2}}\ \mathbf {grad} A^{2}=\mathbf {A} \times (\mathbf {rot} \mathbf {A})+(\mathbf {A} \cdot \nabla)\mathbf {A} }
( A × B ) = B × A A × B {\displaystyle \nabla \cdot (\mathbf {A} \times \mathbf {B})=\mathbf {B} \cdot \nabla \times \mathbf {A} -\mathbf {A} \cdot \nabla \times \mathbf {B} } d i v ( A × B ) = B r o t A A r o t B {\displaystyle \mathbf {div} \ (\mathbf {A} \times \mathbf {B})=\mathbf {B} \cdot \mathbf {rot} \ \mathbf {A} -\mathbf {A} \cdot \mathbf {rot} \ \mathbf {B} }
× ( A × B ) = A ( B ) B ( A ) + {\displaystyle \ \nabla \times (\mathbf {A} \times \mathbf {B})=\mathbf {A} (\nabla \cdot \mathbf {B})-\mathbf {B} (\nabla \cdot \mathbf {A})+}

+ ( B ) A ( A ) B {\displaystyle \;+(\mathbf {B} \cdot \nabla)\mathbf {A} -(\mathbf {A} \cdot \nabla)\mathbf {B} }

r o t ( A × B ) = A ( d i v B ) B ( d i v A ) + {\displaystyle \ \mathbf {rot} (\mathbf {A} \times \mathbf {B})=\mathbf {A} \ (\mathbf {div} \ \mathbf {B})-\mathbf {B} \ (\mathbf {div} \ \mathbf {A})+}

+ ( B ) A ( A ) B {\displaystyle \;+(\mathbf {B} \cdot \nabla)\mathbf {A} -(\mathbf {A} \cdot \nabla)\mathbf {B} }

См. также

Same as Формулы векторного анализа