Interested Article - Эпигенетика

Эпигенетика ( др.-греч. ἐπι- — приставка, обозначающая пребывание на чём-либо или помещение на что-либо) — раздел генетики . Эпигенетика изучает наследуемые изменения активности генов во время роста и деления клеток ( Эпигенетическое наследование ) — изменения синтеза белков , вызванных механизмами, не изменяющими последовательность нуклеотидов в ДНК. Эпигенетические изменения сохраняются в ряде митотических делений соматических клеток , а также могут передаваться следующим поколениям. Регуляторы синтеза белка (активности генетических последовательностей) — метилирование и деметилирование ДНК, и деацетилирование гистонов , фосфорилирование и дефосфорилирование транскрипционных факторов и другие внутриклеточные механизмы .

Эпигеномом называется множество молекулярных меток, регулирующих активность генов, но не изменяющих первичную структуру ДНК .

В рамках эпигенетики исследуются такие процессы как: парамутация , генетический букмаркинг, геномный импринтинг , инактивация X-хромосомы , эффект положения, материнские эффекты, репрограммирование, а также другие механизмы регуляции экспрессии генов. В 2011 году было показано, что метилирование мРНК также играет роль в предрасположенности к диабету , что дало начало новой отрасли — РНК-эпигенетике .

В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе — иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ , чувствительные к метилированию рестриктазы , идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование . Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).

Примеры

Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки . Во время морфогенеза плюрипотентные стволовые клетки формируют различные полипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворённая яйцеклетка — зигота — даёт начало различным типам клеток: нейронам , мышечным клеткам, эпителиям , сосудам. При этом в ряду последовательных делений клеток происходит активация одних генов, а также ингибирование других при помощи эпигенетических механизмов .

Второй пример может быть продемонстрирован на полёвках . Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью — повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.

Эпигенетика играет большую роль в увеличении роста заболеваемостью аллергией , как и состав различных микробиомов — полости носа, кишечника и кожи .

Происхождение термина

Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен, как производное от слов «генетика» и аристотелевского слова « эпигенез ». Автором гипотезы об «эпигенетических изменениях хромосом » является русский биолог Николай Константинович Кольцов , подкрепивший её своей ранней гипотезой о метилировании генома (1915) . Экспериментально явление моделировал ученик Кольцова И.А.Рапопорт (1941) . Популяризировал термин «эпигенетика» английский биолог Конрад Уоддингтон . Кроме того психолог Эрик Эриксон использовал термин «эпигенетика» в своей теории психосоциального развития, однако, его определение не имеет прямой связи с биологической терминологией .

Определения

В 1930-е и 40-е годы, когда этот термин вошел в научный обиход , физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.

Робин Холлидэй ( ) определил эпигенетику как «изучение механизмов временного и пространственного контроля активности генов в процессе развития организмов» . Таким образом, термин «эпигенетика» может быть использован, чтобы описать любые внутренние факторы, которые влияют на развитие организма, за исключением самой последовательности ДНК.

Современное использование этого слова в научном дискурсе является более узким. Греческий префикс epi- в слове, подразумевает факторы, которые влияют «поверх» или «в дополнение к» генетическим, а значит эпигенетические факторы воздействуют вдобавок или помимо традиционных генетических факторов наследственности.

Наиболее часто использующееся в настоящее время определение эпигенетики было введено ( Arthur D. Riggs ) в 90-х годах XX века и формулируется как «изучение митотически и/или мейотически наследуемых изменений в функции генов, которые не могут быть объяснены изменениями в последовательности ДНК» .

Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном» и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.

Молекулярные основы эпигенетики

Молекулярная основа эпигенетики сложна, причём она не затрагивает первичную структуру ДНК, а изменяет активность определённых генов . Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому .

Метилирование ДНК

Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Б. Ф. Ванюшина и Г. Д. Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции C5 цитозинового кольца. Метилирование ДНК , в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагают, что DNMT3a и DNMT3b — это de novo метилтрансферазы, которые формируют профиль метилирования ДНК на ранних стадиях развития, а DNMT1 поддерживает метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень экспрессии генов.

Модификации гистонов

Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходят значительно чаще. Эти модификации включают: фосфорилирование , убиквитинирование , , метилирование , . Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с отрицательно заряженными фосфатными группами в ДНК. В результате происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.

Гистоны способны поддерживать своё модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации .

Ремоделирование хроматина

Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин — это комплекс ДНК с белками, прежде всего, с белками- гистонами . Гистоны формируют нуклеосому , вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов . Хроматин без нуклеосом называется открытым хроматином . Ремоделирование хроматина — это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.

Прионы

Прионные белки обладают аномальной трёхмерной структурой и способны катализировать структурное превращение гомологичных им нормальных белков в себе подобный (прионный) белок, присоединяясь к белку-мишени и изменяя его конформацию. Как правило, прионное состояние белка характеризуется переходом α-спиралей белка в β-слои. Прионы — единственные инфекционные агенты, размножение которых происходит без участия нуклеиновых кислот. Они осуществляют единственный известный путь передачи информации от белка к белку.

Системы структурной наследственности

У генетически идентичных клеток инфузорий , таких как Tetrahymena и Paramecium , показано наследование различий в характере организации рядов ресничек на поверхности клетки. Экспериментально изменённый узор может быть передан дочерним клеткам. Вероятно, существующие структуры выступают в качестве шаблонов для новых структур. Механизмы такого наследования не ясны, но существуют причины полагать, что у многоклеточных организмов также есть системы структурной наследственности .

МикроРНК

В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA) . МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3'-нетранслируемым участком мРНК.

Значение

Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память» .

Медицина

Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу . В настоящее время разрабатывается эпигенетическая терапия , направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.

Эволюция

Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны) . Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене . Было показано, что семейство белков цитозин-дезаминаз APOBEC/AID принимает участие как в генетической, так и в эпигенетической наследственности, используя схожие молекулярные механизмы. У многих организмов было обнаружено более 100 случаев трансгенеративных эпигенетических явлений .

Эпигенетические эффекты у человека

Геномный импринтинг и связанные с ним заболевания

Некоторые заболевания человека связаны с геномным импринтингом , феноменом, при котором аллели гена имеют разный профиль метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера — Вилли . Причиной развития обоих является частичная делеция в регионе 15q . Это связано с наличием геномного импринтинга в данном локусе.

Трансгенеративные эпигенетические эффекты

Маркус Пембри ( Marcus Pembrey ) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в XIX веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности .

Рак и нарушения развития

Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены , в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне .

Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путём изменения активности различных генов. На активность генов при раке может влиять питание и образ жизни .

В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.

Эпигеном и старение

В последние годы накоплено большое количество доказательств того, что эпигенетические процессы играют важную роль на поздних этапах жизни. В частности, при старении происходят широкомасштабные изменения профилей метилирования . Предполагается, что эти процессы находятся под генетическим контролем. Обычно наибольшее количество метилированых цитозиновых оснований наблюдается в ДНК, выделенной из эмбрионов или новорождённых животных, и это количество постепенно уменьшается с возрастом. Подобное снижение уровня метилирования ДНК обнаружено в культивируемых лимфоцитах мышей, хомяков и людей. Оно имеет систематический характер, но может быть ткане- и геноспецифичным. Например, Tra с соавт. (Tra et al., 2002) при сопоставлении более чем 2000 локусов в T-лимфоцитах, изолированных из периферической крови новорожденных, а также людей среднего и старшего возраста, выявили, что 23 из этих локусов с возрастом подвергаются гиперметилированию и 6 — гипометилированию, причём сходные изменения характера метилирования выявлены и в других тканях: поджелудочной железе, легких и пищеводе. Выраженные эпигенетические искажения выявлены у больных прогерией Гетчинсона-Гилфорда .

Предполагается, что деметилирование с возрастом приводит к хромосомным перестройкам за счёт активации мобильных генетических элементов ( МГЭ ), которые обычно подавляются при помощи метилирования ДНК (Barbot et al., 2002; Bennett-Baker, 2003). Систематическое возрастное снижение уровня метилирования может, по крайней мере отчасти, быть причиной возникновения многих комплексных заболеваний, которые нельзя объяснить с помощью классических генетических воззрений.

Ещё одним процессом, происходящим в онтогенезе параллельно с деметилированием и влияющим на процессы эпигенетического регулирования, является конденсация хроматина (гетерохроматинизация), приводящая с возрастом к снижению генетической активности. В ряде работ возраст-зависимые эпигенетические изменения были продемонстрированы также в половых клетках; направление этих изменений, по всей видимости, является геноспецифичным.

Важным доказательством значимости метилирования ДНК стала разработка эпигенетических часов , с помощью которых стало возможным не только с невероятной точностью вычислять биологический возраст организма, независимо от его физиологических показателей, но и выявлять в нем патологические изменения .

См. также

Примечания

Комментарии
  1. Кольцов первым предложил молекулярные механизмы, как своей матричной гипотезы, так и понятия эпигенетических механизмов, изменяющих эту матрицу в соответствии с меняющейся средой (Koltzoff N.K.Physikalisch-chemische Grundlage der Morphologie //Biol. Zbl.1928. Bd.48. S.345-369. Koltzoff N.K. Physiologie du de’velopment et genetique // Actualites scientifiques et industrielles. # 254. Paris: Hermann et C-ie. 1935.)
  2. Кольцов назвал этот феномен «генотипическими фенокопиями» (Рапопорт И.А. Феногенетический анализ дискретности // Журн. общ. биологии. 1941. Т.2, №3. С. 431-444.)
  3. Если Кольцов использовал термин “эпигенетическое явление”, то у Уоддингтона он выглядит как существительное – “эпигенетика”. Читал ли он работу своего предшественника? Скорее всего, да. Ведь он цитировал в другой публикации (Waddington, 1969) работу Кольцова “Наследственные молекулы”. Эта работа вышла брошюрой в том же французском издательстве Hermann в 1939 г. (Koltzoff, 1939). Позже Уоддингтон признавал Кольцова в ряду европейских основателей молекулярной биологии (Waddington, 1969).
Источники
  1. .
  2. Анастасия Берестяная. (рус.) // Наука и жизнь . — 2017. — № 8 . — С. 69—75 . 6 августа 2017 года.
  3. (неопр.) . Дата обращения: 27 декабря 2011. 28 мая 2020 года.
  4. Reik W. (англ.) // Nature. — 2007. — Vol. 447, no. 7143 . — P. 425—432. — doi : . — . [ ]
  5. , с. 203.
  6. Morange M. The attempt of Nikolai Koltzoff (Koltsov) to link genetics, embryology and physical chemistry //J. Bioscience. 2011. V. 36. P. 211–214
  7. “Николай Кольцов и молекулярная биология” // Природа. 2015. No 12. С. 78–82
  8. ↑ Раменский Е. “Эпигенетика: Уоддингтон или Кольцов?” // Онтогенез. 2018 - от 9 июля 2021 на Wayback Machine
  9. Кольцов Н.К. Взгляды Лотси на эволюцию организмов //Природа. 1915. №10. с.1253.
  10. «Epigenetics». Bio-Medicine.org. Retrieved 2011-05-21.
  11. Holliday R. (англ.) // Biological reviews of the Cambridge Philosophical Society. — 1990. — Vol. 65, no. 4 . — P. 431—471. — doi : . — . [ ]
  12. Riggs A. D., Martienssen R. F., Russo V. E. A. Introduction // Epigenetic Mechanisms of Gene Regulation / V. E. A. Russo et al. — N. Y. : Cold Spring Harbor Laboratory Press. — С. 1—4.
  13. Watanabe A. , Yamada Y. , Yamanaka S. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. — 2013. — Vol. 368, no. 1609 . — P. 20120292. — doi : . — . [ ]
  14. Chandler V. L. (англ.) // Cell. — 2007. — Vol. 128, no. 4 . — P. 641—645. — doi : . — . [ ]
  15. Jan Sapp, Beyond the Gene. 1987 Oxford University Press . Jan Sapp, «Concepts of organization: the leverage of ciliate protozoa» . In S. Gilbert ed., Developmental Biology: A Comprehensive Synthesis, (New York: Plenum Press, 1991), 229—258. Jan Sapp, Genesis: The Evolution of Biology. — Oxford: Oxford University Press , 2003.
  16. Oyama, Susan; Paul E. Griffiths, Russell D. Gray (2001). MIT Press . ISBN 0-262-65063-0 .
  17. Verdel et al, 2004
  18. Matzke M. A. , Birchler J. A. (англ.) // Nature reviews. Genetics. — 2005. — Vol. 6, no. 1 . — P. 24—35. — doi : . — . [ ]
  19. Rando O. J. , Verstrepen K. J. (англ.) // Cell. — 2007. — Vol. 128, no. 4 . — P. 655—668. — doi : . — . [ ]
  20. Jablonka E. , Raz G. (англ.) // The Quarterly review of biology. — 2009. — Vol. 84, no. 2 . — P. 131—176. — . [ ]
  21. Knoll J. H. , Nicholls R. D. , Magenis R. E. , Graham J. M. Jr. , Lalande M. , Latt S. A. (англ.) // American journal of medical genetics. — 1989. — Vol. 32, no. 2 . — P. 285—290. — doi : . — . [ ]
  22. Pembrey M. E. , Bygren L. O. , Kaati G. , Edvinsson S. , Northstone K. , Sjöström M. , Golding J. (англ.) // European journal of human genetics : EJHG. — 2006. — Vol. 14, no. 2 . — P. 159—166. — doi : . — . [ ]
  23. Bishop J. B. , Witt K. L. , Sloane R. A. (англ.) // Mutation research. — 1997. — Vol. 396, no. 1-2 . — P. 9—43. — doi : . — . [ ]
  24. Gurvich N. , Berman M. G. , Wittner B. S. , Gentleman R. C. , Klein P. S. , Green J. B. (англ.) // FASEB journal : official publication of the Federation of American Societies for Experimental Biology. — 2005. — Vol. 19, no. 9 . — P. 1166—1168. — doi : . — . [ ]
  25. Smithells D. (англ.) // Drug safety. — 1998. — Vol. 19, no. 5 . — P. 339—341. — . [ ]
  26. Ornish D. , Magbanua M. J. , Weidner G. , Weinberg V. , Kemp C. , Green C. , Mattie M. D. , Marlin R. , Simko J. , Shinohara K. , Haqq C. M. , Carroll P. R. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2008. — Vol. 105, no. 24 . — P. 8369—8374. — doi : . — . [ ]
  27. Джагаров Д.Э (2018). от 21 февраля 2020 на Wayback Machine УСПЕХИ ГЕРОНТОЛОГИИ, 31 (5), 628-632 PMID

Литература

  • Эпигенетика / С. М. Закиян, В. В. Власов, Е. В. Дементьева. — Новосибирск: Изд-во СО РАН, 2012. — 592 с. — 300 экз. — ISBN 978-5-7692-1227-7 .
  • Несса Кэри. Эпигенетика: как современная биология переписывает наши представления о генетике, заболеваниях и наследственности. — Ростов н/Д. : Феникс, 2012. — ISBN 978-5-222-18837-8 .
  • Тереза Макфейл. Аллергия. Жестокие игры иммунитета = Theresa MacPhail. Allergic: Our Irritated Bodies in a Changing World. — М. : Альпина Паблишер, 2024. — С. 448. — ISBN 978-5-9614-3272-5 .
  • Rivera, C. M., & Ren, B. (2013) Mapping Human Epigenomes. Cell, 155(1), 39-55.
  • Taiping Chen & Sharon Y. R. Dent (Feb. 2014). . Nature Reviews Genetics, 15(2), 93-106 doi :
  • Suhas S. P. Rao, et al.(2014). . Cell, doi :
  • C David Allis, Danny Reinberg, Thomas Jenuwein, Marie-Laure Caparros 1st edition. Chegg Inc. www.chegg.com.
  • Armstrong, Lyle Published November 24th 2013 by Garland Science eTextbook
  • C. David Allis, Marie-Laure Caparros, Thomas Jenuwein, Danny Reinberg Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2015 ISBN 978-1-936113-59-0
  • Александр Вайсерман (2018). Эпигенетика. Видеолекция. Искать на канале youtube по ссылке DzyR5MlvzHM
  • Zsidó, B. Z., & Hetényi, C. (2020). Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. International Journal of Molecular Sciences, 21(11), 4134. doi : PMC PMID
  • Смирнов, В. В. : теоретические аспекты и практическое значение : [ 25 января 2017 ] / В. В. Смирнов, Г. Е. Леонов // Лечащий врач : журн. — 2016. — № 12.

Ссылки

Same as Эпигенетика