Interested Article - Гликогеногенез

Гликогеногене́з метаболический путь синтеза гликогена из глюкозы , происходящий с расходованием энергии в виде ATP и UTP . Гликогеногенез происходит во всех тканях животных , однако в основном он имеет место в печени и мышцах . Синтез гликогена происходит в период пищеварения (в абсорбтивный период, т. е. 1—2 часа после приёма углеводной пищи .

Механизм

«Стартовой точкой» гликогеногенеза служит глюкозо-6-фосфат . Глюкозо-6-фосфат может быть получен из глюкозы в ходе реакции, катализируемой изоферментами гексокиназой I и гексокиназой II в мышцах и гексокиназой IV ( глюкокиназой ) в печени:

D-глюкоза + ATP → D-глюкозо-6-фосфат + ADP .

Однако поглощённая с пищей глюкоза может проделывать более сложный путь до глюкозо-6-фосфата. Сначала она попадает в эритроциты , где гликолитически превращается в лактат . Затем лактат поступает в печень, где в ходе глюконеогенеза превращается в глюкозу, а потом и глюкозо-6-фосфат .

Для инициации синтеза гликогена глюкозо-6-фосфат должен быть переведён в глюкозо-1-фосфат ферментом фосфоглюкомутазой :

Глюкозо-6-фосфат ⇌ глюкозо-1-фосфат .

Глюкозо-1-фосфат далее превращается в под действием , это является ключевым этапом в синтезе гликогена .

Глюкозо-1-фосфат + UTP → UDP-глюкоза + PP i

Эта реакция образования нуклеотид-сахара в клеточных условиях необратима , поэтому необратим и гликогеногенез. Конденсация уридинтрифосфата с глюкозо-1-фосфатом имеет небольшое положительное изменение энергии Гиббса , однако в ходе этой реакции выделяется пирофосфат (PP i ), который быстро гидролизуется , а эта реакция сильно экзергонична (ΔG' o = −19,2 кДж/моль). Таким образом концентрация пирофосфата в клетке поддерживается низкой, и образование нуклеотид-сахара оказывается выгодным для клетки энергетически. В действительности быстрое вовлечение продукта реакции в другие реакции, чему способствует большое отрицательное значение изменения энергии Гиббса при гидролизе пирофосфата, стимулирует дальнейшие реакции биосинтеза .

UDP-глюкоза является непосредственным донором глюкозных остатков в реакции, катализируемой , которая катализирует перенос глюкозного остатка с UDP-глюкозы на нередуцирующий конец разветвлённой молекулы гликогена .

Гликогенсинтаза создаёт (α1→4)-гликозидные связи, однако она неспособна создавать (α1→6)- гликозидные связи , которые располагаются в точках ветвления гликогена. Эти связи образует , или амило-(1→4)-(1→6)-трансгликозилаза , или гликозил-(4→6)-трансфераза . Гликогеноразветвляющий фермент катализирует перенос терминального фрагмента длиной 6 или 7 глюкозных остатков с нередуцирующего конца ветви гликогена длиной не менее 11 остатков на гидроксильную группу при шестом атоме остатка глюкозы, располагающегося ниже, причём он может принадлежать как той же самой, так и другой цепи. Таким образом создаётся новая ветвь гликогена .

width=5
width=5

Дополнительные остатки глюкозы могут добавляться на новую ветвь гликогена под действием гликогенсинтазы. Биологический момент разветвления молекулы гликогена состоит в том, что это повышает растворимость гликогена и увеличивает число его нередуцирующих концов, которые являются сайтами активности гликогенфосфорилазы (главный фермент гликогенолиза ) и гликогенсинтазы .

Гликогениновый димер , окружённый двумя молекулами гликогена

Гликогенсинтаза не может начать синтез новой цепи гликогена с нуля. Для этого ей нужна затравка, которой может быть (α1→4)-полиглюкозная цепь или ветвь, содержащая не менее 8 глюкозных остатков. Образование затравки обеспечивает белок , который является и местом синтеза затравки, и катализатором этого процесса. Первым этапом синтеза новой молекулы гликогена является перенос остатка глюкозы с UDP-глюкозы на гидроксильную группу остатка аминокислоты тирозина Tyr 194 гликогенина, обусловленный глюкозилтрансферазной активностью белка. Растущая цепь удлиняется за счёт последовательного добавления 7 или более глюкозных остатков, каждый из которых берётся от UDP-глюкозы, эта реакция также катализируется гликогенином. На этом этапе в синтез гликогена включается гликогенсинтаза, обеспечивающая дельнейшее удлинение гликогеновой цепи. После этого гликогенин в составе β-частицы, ковалентно присоединённой к единственному нередуцирующему концу молекулы гликогена .

Регуляция

Регуляция гликогеногенеза осуществляется совместно с гликогенолизом (расщеплением гликогена) по типу переключения. Это переключение происходит при переходе из абсорбтивного состояния в постабсортивное, а также при смене состояния покоя на режим физической работы. В печени оно осуществляется при участии гормонов инсулина , глюкагона и адреналина , а в мышцах — инсулина и адреналина. Их действие на синтез и распад гликогена опосредовано изменением в противоположном направлении активности двух ключевых ферментов: (гликогеногенез) и гликогенфосфорилазы (гликогенолиз) при помощи их фосфорилирования /дефосфорилирования .

Примечания

  1. , с. 241.
  2. , p. 599.
  3. , p. 600.
  4. , p. 598.
  5. , p. 601.
  6. , с. 245.

Литература

  • David L. Nelson, Michael M. Cox. Lehninger Principles of biochemistry. — Fifth edition. — New York: W. H. Freeman and company, 2008. — 1158 p. — ISBN 978-0-7167-7108-1 .
  • Биологическая химия с упражнениями и задачами / Под ред. С. Е. Северина. — М. : Издательская группа «ГЭОТАР-Медиа», 2011. — 624 с.
Источник —

Same as Гликогеногенез