Interested Article - Конхоида Слюза
Конхоиды Слюза — это семейство плоских кривых , которые изучал в 1662 году Рене́-Франсу́а Валте́р , барон де Слюз .
Кривые задаются в полярных координатах уравнением
- .
В декартовой системе кривые удовлетворяют уравнению
за исключением случая a = 0, в котором кривая имеет изолированную точку (0,0), которой нет в полярном представлении кривой.
Кривые являются рациональными , , кубическими плоскими кривыми .
Выражения имеют асимптоту x =1 (для a ≠0). Точка, наиболее удалённая от асимптоты — (1+ a ,0). (0,0) является для a <−1.
Для область между кривой и асимптотой имеет площадь
Для площадь равна
Если , кривая имеет петлю. Площадь петли равна
Четыре кривые из семейства имеют собственные имена:
- a = 0, прямая (асимптота для остальных кривых семейства)
- a = −1, циссоида Диокла
- a = −2, правая строфоида
- a = −4, трисектриса Маклорена
Примечания
- David Eugene Smith. History of Mathematics. — Courier Dover Publications, 1958. — Т. 2. — С. 327. — ISBN 9780486204307 .
Определения | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Плоские
алгебраические |
|
||||||||||||||||||
Плоские
трансцендентные |
|
||||||||||||||||||
Фрактальные |
|
- Tags: