Interested Article - Теория гомологий
- 2020-07-10
- 1
Теория гомоло́гий ( др.-греч. ὁμός «равный, одинаковый; общий; взаимный» и λόγος «учение, наука ») — раздел математики , который изучает конструкции некоторых топологических инвариантов , называемых группами гомологий и группами когомологий . Также теориями гомологий называют конкретные конструкции групп гомологий.
В простейшем случае топологическому пространству сопоставляется последовательность абелевых групп гомологий , занумерованных натуральными числами . Они являются гомотопическими инвариантами и, в отличие от гомотопических групп , они проще вычисляются и более наглядны геометрически, но для односвязных пространств несут столько же информации .
Однако определение гомологий менее явно и использует некоторую техническую машинерию , и потому существует несколько различных теорий гомологий — как определённых только для «хороших» топологических пространств или требующих дополнительной структуры , так и более сложных, предназначенных для работы с патологическими примерами. Тем не менее, за исключением таких патологических случаев они обычно совпадают: для клеточных пространств это обеспечивается аксиомами Стинрода — Эйленберга .
Другими обычными понятиями теории гомологий являются гомологии с коэффициентами в абелевой группе , относительные гомологии пары пространств и когомологии , определения которых в некотором смысле двойственно к определению гомологий. Часто рассматриваются именно когомологии из-за наличиях на них умножения , превращающего их в градуированную алгебру .
Также когомологиями называются инварианты, сопоставляемые другим математическим объектам — группам , алгебрам Ли , пучкам . Их объединяет формальная схожесть — например, наличие в их определении понятия гомологий цепного комплекса — а в некоторых случаях и наличие конструкций, сопоставляющих таким объектам топологические пространства с подходящими гомологиями.
Общее определение
Напомним, что -тая гомотопическая группа пространства — это множество отображений из -мерной сферы в , рассмотренное с точностью до непрерывной деформации . Для определения гомологий отображения сфер заменяют на -циклы, которые интуитивно представляют как замкнутые (то есть не имеющие границы) ориентированные плёнки размерности внутри , но в разных определениях формализуют по-разному. Условие непрерывной деформируемости заменяют на условие, что разность циклов (их объединение, в котором второй берётся с противоположной ориентацией) является ориентированной границей цикла размерности на один больше.
В стандартных обозначениях группа -циклов — (от нем. Zyklus — «цикл»), группа -границ — (от англ. boundary — «граница»), а фраза «гомологии есть циклы с точностью до границ» записывается как
- .
Для формализации этой идеи необходимо строго определить циклы и их границы, что для циклов размерности приводит к некоторым трудностям . Решением является определение промежуточного понятия группы -цепей , состоящей из формальных линейных комбинаций отображений в неких стандартных элементов, зависящих от выбранной конструкции. Граница стандартных элементов определяется как линейная комбинация стандартных элементов размерности на один меньше с подходящими ориентациями, что индуцирует отображение границы . Тогда -циклы определяются как -цепи с нулевой границей (чтобы равенство границы нулю имело смысл, необходимо брать не только положительные, но и любые линейные комбинации стандартных элементов, а отображение границы задавать со знаком). Таким образом, циклы являются ядром , а границы — образом отображения границы:
- .
Условие того, что все границы является циклами, принимает вид условия цепного комплекса : , а гомологии топологического пространства являются гомологиями этого комплекса.
Выбор стандартных элементов и отображения границы отличается в зависимости от теории. В теории сингулярных гомологий такими элементами являются симплексы , а отображение границы сопоставляет симплексу знакочередующуюся сумму его граней. В теории симплициальных гомологий , определённых для симплициальных комплексов , — тоже симплексы, но не все, а входящие в выбранное симплициальное разбиение. В теории клеточных гомологий , определённых для клеточного комплекса , это гиперсферы из подходящего скелета, а отображение границы задаётся более сложно.
Гомологические теории
- Симплициальные гомологии — гомологии определяются для очень простых пространств ( симплициальных комплексов ).
Определяются довольно просто, но доказательство их инвариантности и функториальности довольно сложно.
- Сингулярные гомологии — другая теория гомологий, предложенная Лефшецом . Их определение требует работы с бесконечномерными пространствами, но инвариантность и функториальность сразу становятся очевидными.
- — теория гомологий, наиболее приспособленная для работы с патологическими пространствами.
Гомологии с коэффициентами в произвольных группах
Можно определять гомологии, позволяя коэффициентам при симплексах в цепях быть элементами любой абелевой группы . То есть, вместо групп рассматривать группы .
Группы гомологий (симплициальные, сингулярные и т. д.) пространства с коэффициентами в группе обозначаются Обычно применяют группу действительных чисел , рациональных чисел , или циклическую группу вычетов по модулю — , причём обычно берётся — простое число, тогда является полем .
Другое описание. Применяя к комплексу
функтор , мы получим комплекс
- ,
гомологии которого и есть гомологии с коэффициентами в .
Когомологии
Кроме цепей можно ввести понятие коцепей — отображений векторного пространства цепей в группу . То есть, пространство коцепей .
Граничный оператор определяется по формуле: (где ). Для такого граничного оператора также выполняется
- , а именно
- .
Поэтому аналогично тому, что было сказано выше, можно ввести понятия коциклов , кограниц и когомологий .
Понятие когомологии двойственно понятию гомологии.
Если — кольцо , то в группе когомологий определено естественное умножение (произведение Колмогорова — Александера или -произведение), превращающее эту группу в градуированное кольцо , называемое кольцо когомологий .
В случае, когда — дифференцируемое многообразие , кольцо когомологий может быть вычислено при помощи дифференциальных форм на (см. Теорема де Рама ).
Понятие когомологии было введено Александером и Колмогоровым .
Относительные гомологии и точная гомологическая последовательность
Возьмём случай двух топологических пространств . Группа цепей (цепи могут быть как с целочисленными коэффициентами, так и с коэффициентами в любой группе ). Относительными цепями будут называться элементы факторгруппы . Так как граничный оператор на группе гомологий подпространства переводит , то можно определить на факторгруппе граничный оператор (мы его обозначим так же) .
Те относительные цепи, которые граничный оператор переводит в будут называться относительными циклами , а цепи, которые являются его значениями — относительными границами . Так как на абсолютных цепях, то это же будет верно для относительных, отсюда . Факторгруппа называется группой относительных гомологий .
Так как каждый абсолютный цикл в является также и относительным то имеем гомоморфизм По функториальному свойству вложение приводит к гомоморфизму .
В свою очередь можно построить гомоморфизм , который мы определим следующим образом. Пусть — относительная цепь, которая определяет цикл из . Рассмотрим её как абсолютную цепь в (с точностью до элементов ). Так как это относительный цикл, то будет равен нулю с точностью до некоторой цепи . Положим равным классу гомологий цепи .
Если мы возьмём другую абсолютную цепь , определяющую тот же относительный цикл, то мы будем иметь , где . Имеем , но так как является границей в то и определяют один и тот же элемент в группе гомологий . Если взять другой относительный цикл , дающий тот же элемент в группе относительных гомологий , где — относительная граница, то в силу того, что граница для относительных гомологий , где , отсюда , но , а — граница в .
Поэтому класс гомологий определен однозначно. Ясно по линейности оператора , что он является гомоморфизмом. Итак мы имеем гомоморфизмы:
- ;
- и
-
;
Можно доказать, что эта последовательность точна , то есть образ любого гомоморфизма равен ядру следующего гомоморфизма.
Аксиомы Стинрода — Эйленберга
Помимо уже известных нам симплициальных и сингулярных гомологий существуют ещё другие теории гомологий и когомологий, например клеточные гомологии , Когомологии Александрова — Чеха , когомологии де Рама и т. д. Стинрод и Эйленберг определили систему аксиом теории (ко)гомологий. Вначале они определяют т. н. допустимый класс пар топологических пространств, удовлетворяющий следующим свойствам:
- Если то и .
- Если , то и , где — замкнутый интервал [0,1].
- , где — одноточечное пространство.
В теории гомологий по Стинроду — Эйленбергу каждой допустимой паре и любому целому числу k соответствует абелева группа и непрерывному отображению пар соответствует гомоморфизм (Пространство отождествляется с парой ) , а с ) , причём выполняются следующие аксиомы:
- Тождественному отображению пары соответствует тождественный гомоморфизм .
- ( функториальность )
- Определен граничный гомоморфизм , причём если , то для соответствующего гомоморфизма верно для любой размерности .
-
Пусть
и
— вложения,
и
— соответствующие гомоморфизмы,
— граничный гомоморфизм. Тогда определяемая ими последовательность
точна ( аксиома точности ). - Если отображения гомотопны , то соответствующие гомоморфизмы равны для любой размерности ( аксиома гомотопической инвариантности ).
- Пусть — открытое подмножество , причём его замыкание содержится во внутренности множества , тогда если пары и принадлежат допустимому классу, то для любой размерности вложению соответствует изоморфизм ( аксиома вырезания ).
- Для одноточечного пространства для всех размерностей . Абелева группа называется группой коэффициентов ( аксиома размерности ).
Для сингулярных гомологий допустимый класс пар состоит из всех пар топологических пространств. Ранее определенные группы сингулярных гомологий с коэффициентами в группе их отображения и граничный гомоморфизм удовлетворяют всем этим аксиомам. Если в качестве допустимого класса взять класс полиэдров, то можно доказать, что гомологии, определенные с помощью данной системы аксиом, совпадают с симплициальными.
Аналогично можно ввести систему аксиом для когомологий, которая полностью аналогична.
Необходимо только иметь в виду, что отображению соответствует ( контравариантность ) и что кограничный гомоморфизм увеличивает размерность.
Экстраординарные гомологии
В системе аксиом Стинрода — Эйленберга аксиома размерности оказывается не столь важна, как остальные.
Теории (ко)гомологий, которые могут иметь ненулевые группы (ко)гомологий одноточечного пространства для размерностей , называются экстраординарными или обобщёнными. Наиболее важными экстраординарными теориями являются K-теория Атьи (надо отметить важный вклад в эту теорию Хирцебруха , Ботта и Адамса ) и теория бордизмов Р. Тома .
См. также
Примечания
- ↑ , с. 95.
- , p. 97.
Литература
- Вик Дж. У. Теория гомологий. Введение в алгебраическую топологию. — М. : МЦНМО , 2005
- Дольд А. Лекции по алгебраической топологии. — М. : Мир, 1976
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы теории гомологий. — М. : Наука, 1984
- Зейферт Г., Трельфалль В. Топология. — Ижевск: РХД, 2001
- Лефшец С. Алгебраическая топология. — М. : ИЛ, 1949
- Новиков П. С. Топология. — 2 изд. испр. и доп. — Ижевск: Институт компьютерных исследований, 2002
- Прасолов В. В. Элементы теории гомологий. — М. : МЦНМО , 2006
- Свитцер Р. М. Алгебраическая топология. — гомотопии и гомологии. — М. : Наука, 1985
- Спеньер Э. Алгебраическая топология. — М. : Мир, 1971
- Стинрод Н., Эйленберг С. Основания алгебраической топологии. — М. : Физматгиз, 1958
- Фоменко А. Т. , Фукс Д. Б. . — М. : Наука, 1989. — 528 с. — ISBN 5020139297 .
- Hatcher A. . — Cambridge University Press, 2002. — ISBN 0521795400 .
- 2020-07-10
- 1