Связность (дифференциальная геометрия)
- 1 year ago
- 0
- 0
Дифференциа́льная геоме́трия кривы́х — раздел дифференциальной геометрии , который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Наиболее общий способ задать уравнение пространственной кривой — параметрический :
(1) |
где — гладкие функции параметра , причем (условие регулярности).
Часто удобно использовать инвариантную и компактную запись уравнения кривой с помощью вектор-функции :
где в левой части стоит радиус-вектор точек кривой, а правая определяет его зависимость от некоторого параметра . Раскрыв эту запись в координатах, мы получаем формулу (1).
В зависимости от свойств
дифференцируемости
функций
, задающих кривую, говорят о степени гладкости (регулярности) кривой. Кривая называется
регулярной
, если для любой её точки, при подходящем выборе прямоугольной декартовой системы координат
, она допускает в окрестности этой точки задание уравнениями вида:
где и — дифференцируемые функции.
Для того чтобы точка кривой, заданной общим уравнением (1), была обыкновенной (не особой точкой ), достаточно, чтобы в этой точке выполнялось вышеуказанное неравенство
Дифференциальная геометрия рассматривает также кусочно-гладкие кривые, которые состоят из гладких участков, разделённых особыми точками. В особых точках определяющие функции либо не удовлетворяют условиям регулярности, либо вообще не дифференцируемы.
Важный класс кривых представляют плоские кривые, то есть кривые, лежащие в плоскости. Плоскую кривую также можно задать параметрически, первыми двумя из трёх уравнений (1). Другие способы:
Функции предполагаются непрерывно дифференцируемыми. При неявном задании точка кривой будет обыкновенной, если в её окрестности функция имеет непрерывные частные производные , не равные нулю одновременно.
Приведём примеры особых точек для плоских кривых.
Ряд основных понятий теории кривых вводится с помощью понятия соприкосновения множеств , которое состоит в следующем. Пусть и — два множества с общей точкой . Говорят, что множество имеет с в точке соприкосновение порядка , если
где — расстояние точки множества от .
В применении к кривым это означает следующее: две кривые в общей точке имеют степень касания не ниже k -го порядка, если их производные в общей точке, до k -го порядка включительно, совпадают.
Если в качестве взять кривую, а в качестве прямую, проходящую через точку кривой, то при условие соприкосновения определяет касательную к кривой в точке (рис. 1). Касательная в точке кривой также может быть определена как предельное положение секущей, проходящей через и близкую к ней точку , когда стремится к .
Гладкая регулярная кривая в каждой точке имеет определённую касательную. Направление касательной в точке кривой, задаваемой уравнениями (1), совпадает с направлением вектора . В векторной записи это производная .
В дифференциальной геометрии выводятся уравнения касательной для различных способов аналитического задания кривой. В частности, для кривой, задаваемой уравнениями (1), уравнения касательной в точке, отвечающей значению параметра , будут
где индекс указывает на значение функций и их производных в точке .
Для плоской кривой уравнение касательной в точке имеет следующий вид.
Если взять в качестве плоскость, проходящую через точку кривой , то условие соприкосновения при определяет соприкасающуюся плоскость кривой (рис. 1). Дважды дифференцируемая кривая в каждой точке имеет соприкасающуюся плоскость. Она либо единственная, либо любая плоскость, проходящая через касательную кривой, является соприкасающейся.
Пусть — уравнение кривой. Тогда уравнение её соприкасающейся плоскости определяется из соотношения где и в скобках стоит смешанное произведение векторов. В координатах оно имеет вид:
Прямая, перпендикулярная касательной и проходящая через точку касания, называется нормалью к кривой . Плоскость, перпендикулярная касательной в данной точке кривой, называется нормальной плоскостью ; все нормали для данной точки лежат в нормальной плоскости. Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью , а нормаль, перпендикулярная соприкасающейся плоскости, называется бинормалью . Также нормалью и бинормалью для краткости могут называть единичные векторы вдоль этих прямых (при этом направление вектора главной нормали обычно выбирают совпадающим с направлением вектора кривизны кривой ).
Векторное уравнение бинормали в точке, отвечающей значению параметра , имеет вид:
Направление главной нормали может быть получено как двойное векторное произведение : .
Для плоской кривой содержащая её плоскость совпадает с соприкасающейся. Нормаль, с точностью до знака, только одна — главная, и её уравнение в точке имеет следующий вид.
Окружность, соприкасающаяся с кривой в заданной точке , имеет с кривой соприкосновение порядка (рис. 2). Она существует в каждой точке дважды дифференцируемой кривой с отличной от нуля кривизной (см. ниже) и является также пределом окружности, проходящей через и две близкие к ней точки , когда стремятся к .
Центр соприкасающейся окружности называют центром кривизны , а радиус — радиусом кривизны . Радиус кривизны является величиной, обратной кривизне (см. ниже). Центр соприкасающейся окружности всегда лежит на главной нормали; отсюда следует, что эта нормаль всегда направлена в сторону вогнутости кривой.
Геометрическое место центров кривизны кривой называется эволютой . Кривая, ортогонально пересекающая касательные кривой, называется эвольвентой . Построение эволюты и эвольвенты — взаимно обратные операции, то есть для эвольвенты данной кривой эволютой является сама кривая.
Для измерения длины участка (дуги) произвольной кривой эта кривая заменяется ломаной, содержащей точки кривой как точки излома, и максимум суммы длин всех таких ломаных принимается за длину кривой (рис. 3). В инвариантном виде формула для вычисления длины дуги ( спрямления кривой ) имеет вид:
То же в декартовых координатах:
В полярных координатах для плоской кривой:
Кривая допускает бесчисленное множество различных способов параметрического задания уравнениями вида (1). Среди них особое значение имеет так называемая естественная параметризация , когда параметром служит длина дуги кривой, отсчитываемая от некоторой фиксированной точки.
Среди преимуществ такой параметризации:
При движении вдоль кривой её касательная меняет направление. Скорость этого вращения (отношение угла поворота касательной за бесконечно малый промежуток времени к этому промежутку) при равномерном, с единичной скоростью, движении вдоль кривой называется кривизной кривой. Производная же по времени положительного единичного вектора касательной называется в этом случае вектором кривизны кривой . То и другое — функции точки кривой. Кривизна есть абсолютная величина вектора кривизны.
В случае произвольного параметрического задания кривой кривизна кривой в трехмерном пространстве определяется по формуле
где — вектор-функция с координатами .
В координатах:
Для кривой в более многомерном пространстве можно заменить векторное произведение , обозначенное здесь квадратными скобками, на внешнее произведение .
Также для кривой в пространстве любой размерности можно воспользоваться формулой вектора кривизны:
и фактом, что кривизна есть его модуль, а также выражением для единичного вектора касательной
и
и получить для кривизны формулу:
или, раскрыв скобки:
Прямые и только прямые имеют всюду равную нулю кривизну. Поэтому кривизна наглядно показывает, насколько (в данной точке) кривая отличается от прямой линии: чем ближе кривизна к нулю, тем это отличие меньше. Кривизна окружности радиуса R равна 1/ R .
Дважды дифференцируемая кривая в каждой точке, где кривизна отлична от нуля, имеет единственную соприкасающуюся плоскость.
Для плоских кривых можно различать направление вращения касательной при движении вдоль кривой, поэтому кривизне можно приписывать знак в зависимости от направления этого вращения. Кривизна плоской кривой, задаваемой уравнениями , определяется по формуле
Знак или берётся по соглашению, но сохраняется вдоль всей кривой.
При движении вдоль кривой в окрестности заданной точки соприкасающаяся плоскость вращается, причём касательная к кривой является мгновенной осью этого вращения. Скорость вращения соприкасающейся плоскости при равномерном, с единичной скоростью, движении называется кручением . Направление вращения определяет знак кручения.
Трижды дифференцируемая кривая в каждой точке с отличной от нуля кривизной имеет определённое кручение. В случае произвольного параметрического задания кривой уравнениями (1) кручение кривой определяется по формуле
здесь обозначает смешанное произведение и — векторное произведение , то есть
Для прямой кручение не определено, поскольку неоднозначно определяется соприкасающаяся плоскость. Плоская кривая в каждой точке имеет кручение, равное нулю. Обратно, кривая с тождественно равным нулю кручением — плоская.
Фигура, составленная из касательной, главной нормали и бинормали, а также из трех плоскостей, попарно содержащих эти прямые, называют естественным трёхгранником ( трёхгранником Френе , см. рис. 4). Соприкасающаяся и нормальная плоскости уже упоминались; третья плоскость, содержащая касательную и бинормаль, называется спрямляющей .
Если рёбра естественного трёхгранника в данной точке кривой принять за оси прямоугольной декартовой системы координат, то уравнение кривой в естественной параметризации раскладывается в окрестности этой точки в ряд по координате вдоль кривой:
где и — кривизна и кручение кривой в указанной точке.
Единичные векторы , соответственно для касательной, главной нормали и бинормали кривой, при движении вдоль кривой изменяются.
При соответствующем выборе направления этих векторов из определения кривизны и кручения получаются формулы:
(2.1) |
(2.2) |
(2.3) |
где дифференцирование идёт по дуге кривой. Формулы (2) называют формулами Френе́ , или Френе — Серре .
Будем рассматривать длину дуги заданной кривой как время, а трёхгранник Френе — как твёрдое тело, движущееся вдоль кривой. Тогда это движение в каждый момент времени состоит из поступательного (вдоль касательной) и мгновенного вращения с угловой скоростью ( ). Из формул Френе вытекает:
Это означает, что вектор мгновенного вращения лежит в спрямляющей плоскости и распадается на 2 составляющие: вращение вокруг бинормали со скоростью (поворот) и вращение вокруг касательной со скоростью (кручение).
Кривая с отличной от нуля кривизной полностью определяется (с точностью до положения в пространстве) заданием её кривизны и кручения как функций дуги кривой. В связи с этим систему уравнений
называют натуральными уравнениями кривой .
Рассмотрим винтовую линию (рис. 4), заданную уравнениями:
По вышеприведенным формулам получаем:
Таким образом, кривизна и кручение винтовой линии постоянны. Поскольку натуральные уравнения однозначно определяют форму кривой, других кривых с постоянными кривизной и кручением не существует. Предельными случаями винтовой линии являются окружность (она получается при ) и прямая ( ).