Interested Article - Лампа чёрного света

Включённая лампа «чёрного света» типа КЛЛ , видимое слабое фиолетовое свечение от проникающего частично через слой люминофора спектра свечения паров ртути в диапазоне 404 нм, свечение самого люминофора в диапазоне 350-370 нм невидимое

Ла́мпа «чёрного све́та» , или лампа Ву́да ( англ. Black light, Wood's light ), лампа ультрафиоле́тового света люминесцентная , дуговая или светодиодная лампа, излучающая длинноволновый (наиболее «мягкий», ближайший к видимому свету) ультрафиолет ( UVA ) с немного различным в зависимости от конкретной модели диапазоном и, в отличие от кварцевой лампы , имеет сравнительно слабое (вплоть до его отсутствия) видимое свечение и не испускает более агрессивные диапазоны ультрафиолета: UVB (ответственный, например, за загар и ожоги кожи от солнечного излучения) и UVC (ответственный за быстрое губительное влияние излучения кварцевых ламп на микроорганизмы , и на глаза и кожу человека; солнечный UVC не достигает поверхности земли) .

Хотя многие другие типы ламп излучают ультрафиолет одновременно с видимым светом, лампа черного света необходима, когда требуется УФ-свет без видимого света, особенно при наблюдении флуоресценции , свойственной многим веществам при воздействии ультрафиолетового излучения. Лампа «черного света» используется для декоративных и художественных световых эффектов, диагностических и терапевтических применений в медицине, обнаружения веществ, специально помеченных флуоресцентными красителями (например в составе банкнот ), охоты на минералы в любительской и профессиональной минералогии , обнаружения фальшивых денег, отверждения пластмассовых смол, привлечения насекомых и обнаружения утечек хладагентов .

Принцип действия

Спектр лампы «чёрного света». 1 — линия европия в тетраборате стронция, ~370 нм; 2 — линия ртути 404,656 нм
Варианты трубчатых ртутных газоразрядных ламп Т5 (16 мм): «чёрного света» 350-370 нм и кварцевая 253 нм со штырьковыми цоколями G5
Газоразрядная ртутная лампа «чёрного света» с цоколем E27

Изготавливаются такие лампы по тем же принципам, что и обычные люминесцентные , с тем лишь отличием, что в производстве ламп чёрного света используется особый люминофор и (или) вместо прозрачной стеклянной колбы используется колба из очень тёмного, почти чёрного, сине-фиолетового увиолевого стекла с добавками оксида кобальта или никеля. Такое стекло называется стеклом Вуда ( англ. Wood's glass ). Оно практически не пропускает видимый свет с длиной волны больше 400 нм .

Для того чтобы получить пик излучения лампы в диапазоне 368—371 нм, в качестве люминофора используются активированный европием борат стронция (SrB 4 O 7 :Eu 2+ ), в то время как для получения излучения в диапазоне 350—353 нм используется активированный свинцом силикат бария (BaSi 2 O 5 :Pb 2+ ) .

Лампа чёрного света может быть изготовлена и без применения специальных люминофоров . В этом случае колба является светофильтром или в ней установлен светофильтр, который пропускает только (преимущественно) ультрафиолетовое излучение. Для светофильтра обычно используется стекло Вуда.

Через такой светофильтр также проходит излучение, генерируемое разрядом в парах ртути, с длинами волн 365,0153 нм, 398,3931 нм, 404,6563 нм и 407,783 нм . Именно такую конструкцию имели самые первые лампы чёрного света.

Выпускаются и светодиоды ультрафиолетового спектра свечения и светильники на их основе .

Применение

Модель с флюоресцирующим макияжем
Ловля насекомых на свет. Лампа ДРЛ (слева) и лампа чёрного света (справа)
Флюоресценция кореллы в УФ-свете

Применяется:

  • в криминалистике для обнаружения следов крови , мочи , спермы или слюны , которые флуоресцируют в свете лампы;
  • при установлении подлинности банкнот (многие современные банкноты имеют флуоресцирующие метки);
  • в медицине при определении дерматологических поражений, в частности при выявлении грибковых поражений и стригущего лишая (трихофития). Специальная лупа с ультрафиолетовой подсветкой в сочетании с таблицей позволяет определить данные о состоянии кожи по её свечению.
  • в индустрии развлечений ( красители , флуоресцирующие в свете лампы, нередко используются при изготовлении клубных украшений или детских игрушек).
  • для отверждения полимеров. Несмотря на то, что для этих целей для максимального эффекта правильней использовать УФ-лампы с диапазоном длин волн 350...400нм, многие производители применяют лампы с чёрным стеклом. Расширенный диапазон длин волн 315...400нм у таких источников УФ-излучения также подходит для полимеризации с несколько увеличенным временем экспозиции.

Помимо этого, лампы с такими характеристиками нередко применяются при ловле насекомых на свет, нередко в сочетании с лампами, излучающими в видимой части спектра . Это связано с тем, что у большинства насекомых видимый спектральный диапазон смещён по сравнению с человеческим в коротковолновую часть спектра: насекомые не видят красную часть спектра, но видят мягкий ультрафиолетовый свет.

Ультрафиолетовые лампы используются в радиолюбительской технологии для засвечивания светочувствительных фоторезистов и стирания данных с микросхем некоторых ПЗУ .

Также лампы Вуда используются для организации ночных экспозиций зоопарков, которые позволяют увидеть жизнь ночных животных (они, как правило, не видят в ультрафиолетовом диапазоне). Человеческий глаз (после нескольких минут адаптации) позволяет видеть слабый свет и незначительную флуоресценцию окружающих предметов, что позволяет наблюдать за животными, которых люди обычно никогда не видят.

См. также

Примечания

  1. .
  2. Kitsinelis, Spiros. (англ.) . — CRC Press , 2012. — P. 108. — ISBN 978-1439899311 . 27 мая 2013 года.
  3. Miller, Larry S.; McEvoy Jr., Richard T. . — 6th. — Elsevier , 2010. — С. 202. — ISBN 978-1437755817 . 26 мая 2013 года.
  4. Booth, C. . — Academic Press , 1971. — Т. 4. — С. 642. — ISBN 978-0080860305 . 27 мая 2013 года.
  5. Simpson, Robert S. (англ.) . — Taylor & Francis , 2003. — P. 125. — ISBN 978-0240515663 . 27 мая 2013 года.
  6. Зайдель А. П., Прокофьев В. П., Райский С. М. , Слитый В. А., Шрейдер Е. Я. Таблицы спектральных линий. — 4-е изд. — М. : Hаука, 1977.
  7. Гальчина Н. А., Коган Л. М., Сощин Н. П., Широков С. С., Юнович А. Э. от 10 февраля 2020 на Wayback Machine // «Физика и техника полупроводников». ISSN 0015-3222. 2007 г., том 41, № 9. — С. 1143-1148.
  8. Toshio Nishida, Tomoyuki Ban, Naoki Kobayashi от 21 февраля 2022 на Wayback Machine / // Applied Physics Letters. 27.05.2003. Volume 82, Issue 22.

Внешние ссылки

  • . Sylvania. 24 июля 2011 года.
  • [chemistry.about.com/cs/howthingswork/f/blblacklight.htm What Materials Glow Under a Black or Ultraviolet Light?] About.com .
  • . fluomin.org.
  • А.В. Захарьевский и др. О лампах «чёрного света» // Светотехника. — 1972. — № 6. — С. 15−16.
Источник —

Same as Лампа чёрного света