Interested Article - Группа кубика Рубика

Развёртка кубика Рубика. Каждому из поворотов граней соответствует элемент группы S 48 .

Гру́ппа ку́бика Ру́бика подгруппа симметрической группы S 48 , элементы которой соответствуют преобразованиям кубика Рубика . Под преобразованием подразумевается эффект поворота любой из граней или последовательности поворотов граней .

Определение

Каждый из поворотов граней кубика Рубика может рассматриваться как элемент симметрической группы множества 48 этикеток кубика Рубика, не являющихся центрами граней. Пометим центры граней буквами (см. рисунок), а остальные этикетки — числами от 1 до 48. Теперь поворотам соответствующих граней на 90° по часовой стрелке можно сопоставить элементы симметрической группы :

Тогда группа кубика Рубика определяется как подгруппа , порождаемая поворотами шести граней на 90° :

Свойства

Порядок группы равен

Пусть граф Кэли группы с 18 образующими, которые соответствуют 18 ходам метрики FTM .

Каждая из конфигураций может быть решена не более чем за 20 ходов FTM. Другими словами, эксцентриситет вершины графа , соответствующей «собранному» состоянию головоломки, равен 20 .

Диаметр графа также равен 20 .

Наибольший порядок элемента в равен 1260. Например, последовательность ходов необходимо повторить 1260 раз , прежде чем кубик Рубика вернётся в исходное состояние .

не является абелевой группой , так как, например, . Другими словами, не все пары элементов коммутируют .

Подгруппы

Каждая группа, порядок которой не превышает 12 , изоморфна некоторой подгруппе группы кубика Рубика. Каждая неабелева группа , порядок которой не превышает 24, также изоморфна некоторой подгруппе группы кубика Рубика. Группы ( циклическая группа порядка 13) и ( диэдральная группа порядка 26) не изоморфны никаким подгруппам группы кубика Рубика .

Центр группы

Центр группы состоит из элементов, коммутирующих с каждым элементом группы. Центр группы кубика Рубика состоит из двух элементов: тождественное преобразование и суперфлип .

Циклические подгруппы

В июле 1981 года Jesper C. Gerved и Torben Maack Bisgaard доказали, что группа кубика Рубика содержит элементы 73 различных порядков от 1 до 1260, и нашли число элементов каждого возможного порядка .

Порядок элемента Последовательность поворотов граней
4
6
63
105
1260

Группа кубика Рубика содержит циклические подгруппы порядков

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 28, 30, 33, 35, 36, 40, 42, 44, 45, 48, 55, 56, 60, 63, 66, 70, 72, 77, 80, 84, 90, 99, 105, 110, 112, 120, 126, 132, 140, 144, 154, 165, 168, 180, 198, 210, 231, 240, 252, 280, 315, 330, 336, 360, 420, 462, 495, 504, 630, 720, 840, 990, 1260.


Лишь один элемент (единичный элемент группы) имеет порядок 1; второй наиболее редкий порядок — 11 (44 590 694 400 элементов ); около 10,6 % всех элементов (4 601 524 692 892 926 000) имеют порядок 60 .

В таблице приведены примеры последовательностей поворотов граней, соответствующих элементам некоторых порядков .

Группа квадратов

Группа квадратов (square group, squares group) — подгруппа группы , порождаемая поворотами граней на 180° :

Порядок группы квадратов равен 663 552 .

Группа квадратов используется в алгоритме Тистлетуэйта , с помощью которого удалось доказать достаточность 45 ходов для сборки кубика Рубика.

Супергруппа кубика Рубика

Этикетки, находящиеся в центрах граней кубика Рубика, не перемещаются, но поворачиваются. На обычном кубике Рубика ориентация центров граней невидима.

Группа всех преобразований кубика Рубика с видимыми ориентациями центров граней называется супергруппой кубика Рубика. Она в раз больше группы .

Гамильтонов цикл на графе Кэли

На графе Кэли группы с 12 образующими, которые соответствуют ходам метрики QTM, существует гамильтонов цикл . Найденный цикл использует повороты только 5 из 6 граней .

Существует соответствующая гипотеза Ловаса для произвольного графа Кэли.

См. также

Примечания

  1. Часто в литературе не разделяются три, строго говоря, различных понятия — состояние (конфигурация) кубика Рубика, преобразование и последовательность поворотов граней («ходов»). См., например, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, Andrew Winslow. . — «The configurations of the Rubik's Cube, or equivalently the transformations from one configuration to another, form a subgroup of a permutation group, generated by the basic twist moves». Дата обращения: 14 ноября 2015. 3 апреля 2017 года. . Обычно из контекста ясно, идёт ли речь о состояниях или о преобразованиях, переводящих одно состояние в другое.
  2. Schönert, Martin (англ.) . Дата обращения: 19 июля 2013. 5 сентября 2013 года.
  3. В. Дубровский. // Квант. — 1982. — № 8 . — С. 22 — 27, 48 . 30 мая 2014 года.
  4. Jaap Scherphuis. . The number of positions (англ.) . Дата обращения: 19 июля 2013. 5 сентября 2013 года.
  5. Jaap Scherphuis. (англ.) . Дата обращения: 22 июля 2013. 5 сентября 2013 года.
  6. Ryan Heise. (англ.) . Дата обращения: 21 июля 2013. 5 сентября 2013 года.
  7. Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J. (англ.) . Дата обращения: 19 июля 2013. 26 июля 2013 года.
  8. Weisstein, Eric W. (англ.) . Дата обращения: 22 июля 2013. 2 июня 2013 года.
  9. Lucas Garron. (англ.) . Дата обращения: 22 июля 2013. 5 сентября 2013 года.
  10. Joyner, David. (англ.) . — Baltimore: Johns Hopkins University Press , 2002. — P. . — ISBN 0-8018-6947-1 .
  11. Jamie Mulholland. (2011). Архивировано из 24 ноября 2015 года.
  12. Davis, Tom. (2006). Дата обращения: 22 июля 2013. 5 сентября 2013 года.
  13. , p. 209.
  14. David Singmaster. . Orders of Elements (pp. 34-35) (англ.) . Дата обращения: 24 ноября 2015. 14 сентября 2015 года.
  15. Walter Randelshofer. . Дата обращения: 24 ноября 2015. 24 ноября 2015 года.
  16. Jesper C. Gerved, Torben Maack Bisgaard. (27 июля 1981). 1 августа 2015 года. (письмо Д. Сингмастеру с таблицами, содержащими число элементов каждого возможного порядка группы кубика Рубика)
  17. .
  18. Michael Z. R. Gottlieb. . Дата обращения: 24 ноября 2015. 3 февраля 2016 года.
  19. , p. 234.
  20. Jaap Scherphuis. (англ.) . Дата обращения: 22 июля 2013. 5 сентября 2013 года.
  21. Bruce Norskog. Domain of the Cube Forum. Дата обращения: 21 июля 2013. 5 сентября 2013 года.
  22. Bruce Norskog. Speedsolving.com. Дата обращения: 21 июля 2013. 5 сентября 2013 года.
  23. , p. 129.

Литература

Ссылки

  • W. D. Joyner. (англ.) . Дата обращения: 22 июля 2013. 5 сентября 2013 года.
  • Janet Chen. . Дата обращения: 28 марта 2022. 30 сентября 2019 года.
Источник —

Same as Группа кубика Рубика