Interested Article - Точка Лемуана

То́чка Лемуа́на (точка пересечения симедиан, точка Гребе, обозначается или ) — одна из замечательных точек треугольника .

Определение

У точки Лемуана существует три равносильных определения:

  • точка пересечения прямых, соединяющих каждую вершину треугольника с точками пересечения касательных к описанной окружности, проведённых из двух других вершин.
  • точка пересечения симедиан .
  • точка пересечения прямых, соединяющих середины сторон треугольника с серединами соответствующих им высот.

Утверждение о равносильности первых двух определений называется теоремой о симедиане .

Шестиугольник Лемуана, вписанный в данный опорный треугольник

Шестиугольник Лемуана представляет собой шестиугольник, около которого можно описать окружность. Его вершинами являются шесть точек пересечениями сторон треугольника с тремя линиями, которые параллельны сторонам и которые проходят через его точку Лемуана . В любом треугольнике шестиугольник Лемуана находится внутри треугольника с тремя парами вершин, лежащих попарно на каждой стороне треугольника.

Круги Лемуана

Лемуан доказал, что если прямые линии проходят через точку Лемуана параллельно сторонам треугольника, то шесть точек пересечения линий и сторон треугольника лежат на одной окружности, или что они лежат на окружности. . Эта окружность теперь известна, как первый круг или окружность Лемуана , или просто как круг Лемуана . . Иными словами, шестиугольник Лемуана , определенный выше, является вписанным в окружность Лемуана .

История

Впервые точку Лемуана (Lemoine Point) обнаружил ( 1809 ) швейцарский геометр и тополог Симон Антуан Жан Люилье . Этой точке было посвящено исследование ( 1847 ) , в честь которого в Германии она называлась точкой Гребе (Grebe point). Точка названа в честь французского геометра Эмиля Лемуана , опубликовавшего доказательство существования точки ( 1873 ). Росс Хонсберегер (Ross Honsberger) назвал существование точки Лемуана "одним из драгоценных камней в короне современной геометрии".

Свойства

  • Сумма квадратов расстояний от точки на плоскости до сторон треугольника минимальна, когда эта точка является точкой Лемуана .
  • Расстояния от точки Лемуана до сторон треугольника пропорциональны длинам сторон.
  • Точка Лемуана является точкой пересечения медиан треугольника, образованного проекциями точки Лемуана на стороны. Более того, такая точка единственна.
  • Точка Лемуана является точкой Жергонна треугольника, образованного касательными к описанной окружности в вершинах треугольника. Этот треугольник называется тангенциальным треугольником .
  • Точка Лемуана изогонально сопряжена точке пересечения медиан
  • Точка Лемуана изотомически сопряжена его точке Брокара (третьей, в энциклопедии центров треугольника обозначенной как Х(76) ).
  • Точка Лемуана является описанной окружности. Трилинейные поляры точек на описанной окружности проходят через точку Лемуана.

Две окружности Лемуана

  • Если провести через точку Лемуана отрезки, параллельные сторонам треугольника, с концами на сторонах, то концы этих отрезков будут лежать на одной окружности (на первой окружности Лемуана ). Центром первой окружности Лемуана является середина отрезка, который соединяет центр описанной окружности треугольника с точкой Лемуана .
  • Если провести через точку Лемуана отрезки, антипараллельные сторонам треугольника, с концами на сторонах, то концы этих отрезков будут лежать на одной окружности (на второй окружности Лемуана ). Точка Лемуана будет её центром.

Координаты

Ссылки

Примечания

  1. Nathan Altshiller Court. College Geometry (неопр.) . — 2. — New York: Barnes and Noble, 1969. — ISBN 0-486-45805-9 .
  2. Lachlan, Robert. An Elementary Treatise on Modern Pure Geometry (англ.) . — (англ.) , 1893. — ISBN 978-1-4297-0050-4 .
  3. Honsberger, Ross (1995), "Chapter 7: The Symmedian Point", Episodes in Nineteenth and Twentieth Century Euclidean Geometry , Washington, D.C.: Mathematical Association of America .
  4. Акопян А. В. , Заславский А. А. . Геометрические свойства кривых второго порядка. — 2-е изд., дополн.. — 2011. — С. 50.
  5. Зетель С. И. Новая геометрия треугольника. 2-е изд. М.: Учпедгиз, 1962. С. 108-110, п. 94-96, черт. 80-81
  6. Зетель С. И. Новая геометрия треугольника. 2-е изд. М.: Учпедгиз, 1962. С. 111, п. 98
Источник —

Same as Точка Лемуана