Interested Article - Адипоцит
- 2020-04-06
- 1
Адипоци́т — основной тип клеток , из которых, в основном, состоит жировая ткань . Адипоциты представляют собой округлые клетки, содержащие одну или несколько жировых капель в цитоплазме. В зависимости от принадлежности к белой или бурой жировой ткани адипоциты делят на белые и бурые , которые отличаются морфологически и функционально. Белые адипоциты участвуют в жировом обмене, обладают способностью накапливать триглицериды и другие липиды , которые в дальнейшем используются организмом для выработки энергии , продуцируют ряд гормонов ( лептин , адипонектин , и другие), бурые адипоциты осуществляют термогенез .
Адипоциты могут давать начало опухолям — доброкачественным липомам и злокачественным липосаркомам . Накопление жира в адипоцитах тесно связано с развитием ожирения .
Строение
Клетки жировой ткани, накапливающие жир, называют адипоцитами. Одиночные адипоциты имеют шарообразную форму. Жировую ткань принято подразделять на белую и бурую согласно её цвету. Адипоцит белой жировой ткани содержит одну большую каплю нейтрального жира (такие адипоциты также называют унилокулярными), которая занимает центральную часть клетки и окружена тонким слоем цитоплазмы, в утолщённой части которого залегает уплощённое ядро . В цитоплазме адипоцитов содержатся в небольших количествах и другие липиды : холестерин , фосфолипиды , а также свободные жирные кислоты . Эти мелкие жировые включения особенно выражены у незрелых адипоцитов. Зрелый адипоцит имеет крупные размеры, от 50 до 150 мкм . Так как липиды вымываются ксилолом и другими растворителями , использующимися при приготовлении гистологических препаратов, унилокулярные адипоциты при рассмотрении с помощью светового микроскопа выглядят пустыми .
Адипоциты бурой жировой ткани, по сравнению с клетками белой жировой ткани, имеют больше митохондрий и вместо одной крупной жировой капли содержат множество мелких жировых включений в цитоплазме (такие адипоциты называют мультилокулярными ). Бурый цвет обеспечивается железосодержащими пигментами цитохромами , расположенными в митохондриях. Изменения бурой жировой ткани при голодании выражены меньше, чем белой. Бурая жировая ткань наиболее выражена у новорождённых и животных , впадающих в спячку , но есть и у взрослого человека .
Белую жировую ткань, которая приобрела некоторые черты бурой жировой ткани, называют «бежевым жиром»; в её клетках, бежевых адипоцитах , вместо одной крупной жировой ткани имеется несколько включений меньшего размера, увеличивается количество митохондрий и повышается уровень экспрессии гена UCP1 , кодирующего белок термогенин .
Четвёртый тип адипоцитов был недавно описан в составе подкожной жировой ткани мышей во время беременности и лактации , когда жировая ткань в молочных железах существенно сокращается, а железистая часть, наоборот, разрастается. Новосформированные эпителиальные клетки, входящие в состав железистой части, называют розовыми адипоцитами . Они появляются в результате прямой белых адипоцитов в эпителиальные клетки, продуцирующие молоко . Образование розовых адипоцитов обратимо, и по завершении лактации они превращаются обратно в белые адипоциты, восстанавливая жировую часть молочной железы .
Физиология
Метаболизм жиров
Жировая ткань играет важную роль в поддержании уровня свободных жирных кислот и триглицеридов в крови, а также вносит вклад в развитие инсулинорезистентности (особенно абдоминальный жир). Адипоциты также могут запасать триглицериды, поступающие с пищей и циркулирующие в крови в составе хиломикронов , липиды, синтезируемые печенью и циркулирующие в кровотоке в виде липопротеинов очень низкой плотности , кроме того, свободные жирные кислоты и глицерин могут синтезироваться в самих адипоцитах. Хиломикроны и липопротеины очень низкой плотности при поступлении в жировую ткань гидролизуются липопротеинлипазой на люминальной поверхности кровеносных капилляров. Свободные жирные кислоты поступают в адипоциты по механизму активного транспорта и диффузии . В адипоцитах жирные кислоты в ходе реакции этерификации присоединяются к с образованием триглицеридов, которые поступают в жировую каплю .
В жировой ткани идёт постоянное поступление и выход свободных жирных кислот. Результирующее направление движения свободных жирных кислот контролируются гормонами инсулином и лептином . Если инсулин повышен, то вход свободных жирных кислот в жировую ткань превышает её выход, и выход жирных кислот из жировой ткани возможен только при низком уровне инсулина в крови. Уровень инсулина повышается при поступлении в организм углеводной пищи, которое приводит к росту концентрации сахара в крови . Инсулин также стимулирует поглощение глюкозы адипоцитами и способствует её преобразованию в жир .
При нервной или гуморальной стимуляции адипоцитов жировые запасы мобилизуются и клетки высвобождают жирные кислоты и глицерин. Норадреналин , выделяемый надпочечниками и симпатическими окончаниями , активирует гормончувствительную липазу , которая расщепляет триглицериды на поверхности липидных капель. Эта липаза также активируется гипофизарным гормоном роста . Свободные жирные кислоты диффундируют через мембраны адипоцитов и эндотелиальных клеток, выходят в кровоток и связываются с белком альбумином . Более гидрофильный глицерин свободно плавает в крови и поглощается печенью. Инсулин ингибирует гормончувствительную липазу . Мобилизацию адипоцитов также запускают адреналин и адренокортикотропный гормон .
Продукция гормонов
Молекулы , продуцируемые жировой тканью, играют важнейшую роль в поддержании метаболического гомеостаза , и нарушения в их образовании могут приводить к развитию ожирения и ряда патологических состояний, связанных с ожирением, поэтому жировую ткань рассматривают как эндокринный орган . Гормоны жировой ткани в совокупности называют адипокинами . Адипокины представляют собой разновидность цитокинов (сигнальных белков). Первым открытым адипокином стал гормон лептин, описанный в 1994 году. Лептин играет роль в поддержании нормальной массы тела и передаёт сигнал, свидетельствующий о насыщении, в гипоталамус . Лептин также контролирует липогенез в гепатоцитах , подавляя путь биосинтеза жирных кислот , и способствует окислению жирных кислот в мышцах. Наиболее обильно продуцируется адипокин, известный как адипонектин . Он повышает чувствительность к инсулину, и его введение мышам, страдающим ожирением, позволило частично преодолеть инсулинорезистентность. К числу адипокинов также относится фактор некроза опухоли α (TNFα), который вовлечён в формирование инсулинорезистентности за счёт подавления . В жировой ткани TNFα продуцируют макрофаги и другие иммунные клетки. У людей и мышей, страдающих ожирением, в жировой ткани возрастает экспрессия интерлейкина 6 (IL-6), однако его роль в метаболизме глюкозы неясна . Также к числу адипокинов относят аспросин , , апелин , , CCL2 и некоторые другие цитокины. Лептин и резистин продуцируются преимущественно подкожной жировой тканью . Кроме того, и у женщин, и у мужчин жировая ткань является главным периферическим источником ароматазы , которая участвует в синтезе эстрогенов .
Термогенез
Основная функция бурой жировой ткани — термогенез. У животных в конце спячки и новорождённых детей в бурую жировую ткань поступает норадреналин, который, как и в белой жировой ткани, стимулирует гормончувствительную липазу и запускает гидролиз триглицеридов. Однако, в отличие от белых адипоцитов, в бурых адипоцитах свободные жирные кислоты не высвобождаются в кровь, а быстро метаболизируются, что сопровождается повышением потребления кислорода и продукцией тепла. Локальное повышение температуры в бурой жировой ткани приводит к нагреванию омывающей её крови, которая передаёт тепло на весь организм. Усиленная продукция тепла в бурых адипоцитах возможна благодаря тому, что в их внутренних митохондриальных мембранах в большом количестве содержится трансмембранный разобщающий белок термогенин , или UCP1. В присутствии свободных жирных кислот термогенин позволяет протонам поступать из межмембранного пространства непосредственно в матрикс митохондрии без прохождения протонов через АТФ-синтазу . Вместо образования АТФ энергия протонов идёт на выделение тепла . Считается, что термогенин является симпортером протонов и свободных жирных кислот, но конкретный механизм его действия неясен . Известно, что термогенин ингибируют АТФ, АДФ и ГТФ . Термогенез в бурых адипоцитах также может активироваться при переедании .
Развитие
Как и другие клетки соединительной ткани, адипоциты происходят от . Мезенхимальные стволовые клетки дают начало преадипоцитам, которые похожи на крупные фибробласты с цитоплазматическими липидными включениями. Первоначально липидные капли молодого белого адипоцита изолированы друг от друга, но вскоре они сливаются с образованием единой большой жировой капли. Белые адипоциты развиваются вместе с меньшей популяцией бежевых адипоцитов, которые присутствуют в зрелой белой жировой ткани. При адаптации к низким температурам белые адипоциты частично обратимо превращаются в бурые, приобретают большое количество мелких липидных капель вместо одной крупной, их профиль экспрессии генов становится близок к таковому у бурых адипоцитов (в частности, возрастает экспрессия гена UCP1 , кодирующего термогенин), и так называемые бежевые адипоциты приступают к термогенезу .
Бурые адипоциты также развиваются от мезенхимальных стволовых клеток , но в других локациях тела эмбриона , отличных от тех, где происходит дифференцировка белых адипоцитов. Бурые адипоциты в ходе эмбрионального развития возникают раньше белых. У человека объём бурой жировой ткани относительно массы тела максимален при рождении, когда наиболее высока потребность в термогенезе, и в детстве почти полностью исчезает через инволюцию и апоптоз адипоцитов. У взрослых бурый жир наиболее активен у людей худощавого телосложения. При адаптации к холоду бежевые адипоциты могут превращаться в бурые, кроме того, возможна пролиферация и дифференцировка бурых адипоцитов от мезенхимальных клеток-предшественников. Автономные нервы не только стимулируют термогенную активность бурых адипоцитов, но также способствуют их дифференцировке и предотвращают апоптоз зрелых бурых адипоцитов .
Возрастные изменения
Клиническое значение
Белые адипоциты могут давать начало часто встречающимся доброкачественным образованиям — липомам . Злокачественные опухоли , происходящие из жировой ткани — липосаркомы — относительно редки. Доброкачественные опухоли, образованные бурыми адипоцитами, иногда называют .
Под ожирением понимают состояние, при котором в организме накапливается избыток жировой ткани . Ожирение повышает риск возникновения многих заболеваний и патологических состояний: сердечно-сосудистых , сахарного диабета 2-го типа , , некоторых видов рака , а также остеоартрита . Конвертацию белой жировой ткани в бурую рассматривают как перспективную стратегию терапии ожирения .
В настоящее время жировую ткань можно использовать в качестве источника . Стволовые клетки жировой ткани можно легко перепрограммировать в индуцированные плюрипотентные стволовые клетки . Получение стволовых клеток из клеточного материала самого организма пациента снижает риск отторжения трансплантата и позволяет избежать многих этических проблем, связанных с использованием эмбриональных стволовых клеток . Имеются сведения, что стволовые клетки из разных локаций жировой ткани (абдоминального жира, эпикардиального жира и других) имеют разные свойства : скорость пролиферации, иммунофенотип , потенциал дифференцировки и устойчивость к гипоксии .
История изучения
Жировая ткань (точнее, бурая жировая ткань) впервые была описана в 1551 году швейцарским медиком и учёным-энциклопедистом Конрадом Геснером (1516—1565) . В 1902 году было отмечено сходство между шейными жировыми отложениями у новорождённых младенцев и млекопитающих, впадающих в спячку. Активное исследование бурой жировой ткани возобновилось в 1960-х годах (в 1964 году Уильям Сильверман и его коллеги доказали, что у человека бурый жир также отвечает за термогенез), и к 1980-м годам установилось мнение, что у взрослых людей бурой жировой ткани нет. Это представление было пересмотрено в конце 2000-х годов .
Белые адипоциты, или «жировые везикулы», а также их вклад в рост жировых отложений впервые были описаны в XIX веке. Активное исследование жировой ткани началось лишь в 1940-х годах. В 1940 году было показано, что жировая ткань иннервируется и снабжается кровью. В 1950-х годах была прояснена роль белых адипоцитов в метаболизме липидов , и дальнейшее изучение регуляции работы жировой ткани продолжалось во всей второй половине XX века . Первые данные, свидетельствующие об эндокринной функции белой жировой ткани, появились в 1980-х годах .
Примечания
- ↑ , p. 122.
- , p. 126.
- , с. 231—232.
- Nedergaard J. , Bengtsson T. , Cannon B. (англ.) // American Journal Of Physiology. Endocrinology And Metabolism. — 2007. — August ( vol. 293 , no. 2 ). — P. 444—452 . — doi : . — .
- Saito M. , Okamatsu-Ogura Y. , Matsushita M. , Watanabe K. , Yoneshiro T. , Nio-Kobayashi J. , Iwanaga T. , Miyagawa M. , Kameya T. , Nakada K. , Kawai Y. , Tsujisaki M. (англ.) // Diabetes. — 2009. — July ( vol. 58 , no. 7 ). — P. 1526—1531 . — doi : . — .
- Harms M. , Seale P. (англ.) // Nature Medicine. — 2013. — October ( vol. 19 , no. 10 ). — P. 1252—1263 . — doi : . — .
- ↑ Colaianni Graziana , Colucci Silvia , Grano Maria. (англ.) // Multidisciplinary Approach to Obesity. — 2014. — 15 October. — P. 3—12 . — ISBN 9783319090443 . — doi : .
- , p. 123—124.
- Amitani M. , Asakawa A. , Amitani H. , Inui A. (англ.) // Frontiers In Neuroscience. — 2013. — Vol. 7 . — P. 51—51 . — doi : . — .
- , p. 124.
- , p. 124—125.
- Stallknecht B. , Simonsen L. , Bülow J. , Vinten J. , Galbo H. (англ.) // The American Journal Of Physiology. — 1995. — December ( vol. 269 , no. 6 Pt 1 ). — P. 1059—1066 . — doi : . — .
- Spirovski M. Z. , Kovacev V. P. , Spasovska M. , Chernick S. S. (англ.) // The American Journal Of Physiology. — 1975. — February ( vol. 228 , no. 2 ). — P. 382—385 . — doi : . — .
- Kiwaki K. , Levine J. A. (англ.) // Journal Of Comparative Physiology. B, Biochemical, Systemic, And Environmental Physiology. — 2003. — November ( vol. 173 , no. 8 ). — P. 675—678 . — doi : . — .
- Romere C. , Duerrschmid C. , Bournat J. , Constable P. , Jain M. , Xia F. , Saha P. K. , Del Solar M. , Zhu B. , York B. , Sarkar P. , Rendon D. A. , Gaber M. W. , LeMaire S. A. , Coselli J. S. , Milewicz D. M. , Sutton V. R. , Butte N. F. , Moore D. D. , Chopra A. R. (англ.) // Cell. — 2016. — 21 April ( vol. 165 , no. 3 ). — P. 566—579 . — doi : . — .
- Wang H. , Chu W. S. , Hemphill C. , Elbein S. C. (англ.) // The Journal Of Clinical Endocrinology And Metabolism. — 2002. — June ( vol. 87 , no. 6 ). — P. 2520—2524 . — doi : . — .
- Guo L. , Li Q. , Wang W. , Yu P. , Pan H. , Li P. , Sun Y. , Zhang J. (англ.) // Endocrine Research. — 2009. — Vol. 34 , no. 4 . — P. 142—154 . — doi : . — .
- MacDougald O. A. , Burant C. F. (англ.) // Cell Metabolism. — 2007. — September ( vol. 6 , no. 3 ). — P. 159—161 . — doi : . — .
- Christiansen T. , Richelsen B. , Bruun J. M. (англ.) // International Journal Of Obesity (2005). — 2005. — January ( vol. 29 , no. 1 ). — P. 146—150 . — doi : . — .
- Katja Hoehn, Elaine N. Marieb. Anatomy & Physiology : [ англ. ] . — 3rd. — San Francisco, Calif. : Pearson/Benjamin Cummings, 2008. — ISBN 978-0-8053-0094-9 .
- Stocco C. (англ.) // Steroids. — 2012. — January ( vol. 77 , no. 1-2 ). — P. 27—35 . — doi : . — .
- , p. 126—127.
- Fedorenko A. , Lishko P. V. , Kirichok Y. (англ.) // Cell. — 2012. — 12 October ( vol. 151 , no. 2 ). — P. 400—413 . — doi : . — .
- Azzu V. , Brand M. D. (англ.) // Trends In Biochemical Sciences. — 2010. — May ( vol. 35 , no. 5 ). — P. 298—307 . — doi : . — .
- Busiello R. A. , Savarese S. , Lombardi A. (англ.) // Frontiers In Physiology. — 2015. — Vol. 6 . — P. 36—36 . — doi : . — .
- , p. 125.
- , p. 127.
- . World Health Organization (январь 2015). Дата обращения: 2 февраля 2016. 22 апреля 2018 года.
- Singh A. K. , Corwin R. D. , Teplitz C. , Karlson K. E. (англ.) // The Thoracic And Cardiovascular Surgeon. — 1984. — February ( vol. 32 , no. 1 ). — P. 23—26 . — doi : . — .
- Giordano Antonio , Frontini Andrea , Cinti Saverio. (англ.) // Nature Reviews Drug Discovery. — 2016. — 11 March ( vol. 15 , no. 6 ). — P. 405—424 . — ISSN . — doi : .
- Sugii S. , Kida Y. , Kawamura T. , Suzuki J. , Vassena R. , Yin Y. Q. , Lutz M. K. , Berggren W. T. , Izpisúa Belmonte J. C. , Evans R. M. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2010. — 23 February ( vol. 107 , no. 8 ). — P. 3558—3563 . — doi : . — .
- ↑ Atzmon G. , Yang X. M. , Muzumdar R. , Ma X. H. , Gabriely I. , Barzilai N. (англ.) // Hormone And Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Metabolisme. — 2002. — November ( vol. 34 , no. 11-12 ). — P. 622—628 . — doi : . — .
- Baglioni S. , Cantini G. , Poli G. , Francalanci M. , Squecco R. , Di Franco A. , Borgogni E. , Frontera S. , Nesi G. , Liotta F. , Lucchese M. , Perigli G. , Francini F. , Forti G. , Serio M. , Luconi M. (англ.) // PloS One. — 2012. — Vol. 7 , no. 5 . — P. e36569—36569 . — doi : . — .
- Russo V. , Yu C. , Belliveau P. , Hamilton A. , Flynn L. E. (англ.) // Stem Cells Translational Medicine. — 2014. — February ( vol. 3 , no. 2 ). — P. 206—217 . — doi : . — .
- Cannon B. , Nedergaard J. (англ.) // Nature. — 2008. — 21 August ( vol. 454 , no. 7207 ). — P. 947—948 . — doi : . — .
- Lee Paul , Swarbrick Michael M. , Ho Ken K. Y. (англ.) // Endocrine Reviews. — 2013. — 1 June ( vol. 34 , no. 3 ). — P. 413—438 . — ISSN . — doi : .
- Lafontan Max. (англ.) // American Journal of Physiology-Cell Physiology. — 2012. — 15 January ( vol. 302 , no. 2 ). — P. C327—C359 . — ISSN . — doi : .
- Krug A. W. , Ehrhart-Bornstein M. (англ.) // Cellular And Molecular Life Sciences : CMLS. — 2005. — June ( vol. 62 , no. 12 ). — P. 1359—1362 . — doi : . — .
Литература
- Афанасьев Ю. И., Кузнецов С. Л., Юрина Н. А., Котовский Е. Ф. и др. Гистология, цитология и эмбриология. — 6-е изд., перераб. и доп. — М. : Медицина, 2004. — 768 с. — ISBN 5-225-04858-7 .
- Anthony L. Mescher. Junqueira's Basic Histology : [ англ. ] . — McGraw-Hill Education, 2016. — ISBN 978-0-07-184270-9 .
Эта статья входит в число
добротных статей
русскоязычного раздела Википедии.
|
- 2020-04-06
- 1