Interested Article - Золотая спираль

Спираль Дюрера и золотая спираль, вписанные в последовательность вложенных друг в друга золотых прямоугольников: зелёная спираль - спираль Дюрера - составлена из четвертинок окружностей внутри квадратов, в то время как красная спираль является золотой спиралью, особым видом логарифмической спирали . Перекрывающиеся секции показаны жёлтым цветом. Длина части спирали внутри большего квадрата находится к длине спирали внутри следующего квадрата в золотой пропорции

Золотая спираль логарифмическая спираль , коэффициент роста которой равен φ 4 , где φ золотое сечение . Коэффициент роста логарифмической спирали показывает, во сколько раз изменился полярный радиус спирали при повороте на угол 360° . Своё название эта спираль получила из-за связи с последовательностью вложенных друг в друга прямоугольников с отношением сторон, равным φ , которые принято называть золотыми . Золотую спираль можно как вписать в систему таких прямоугольников, так и описать вокруг неё. Популярность золотая спираль приобрела из-за того, что известная с начала XVI века и применяющаяся в искусстве спираль, построенная по методу Дюрера , оказалась хорошей аппроксимацией для золотой спирали (см. рисунок).

Формула

Спираль Фибоначчи аппроксимирует золотую спираль с использованием четвертинок окружности в квадратах с размерами квадратов, равных числам Фибоначчи. На рисунке показаны квадраты с размерами 1, 1, 2, 3, 5, 8, 13, 21.

Уравнение для золотой спирали в полярной системе координат то же самое, что и для других логарифмических спиралей , но со специальным значением коэффициента роста - φ 4 :

,

где a — произвольная положительная вещественная константа, а золотое сечение .

Основное свойство логарифмической спирали: угол между радиус-вектором, исходящим из полюса, и касательной к спирали - μ - постоянен, и для золотой спирали определяется формулой:

, где .

Откуда .

Приближения золотой спирали

Литовская монета

Существует несколько похожих спиралей, которые близки, но не совпадают в точности с золотой спиралью , с которой их часто путают.

Как уже было написано выше, при вписывании золотой спирали в последовательность вложенных друг в друга золотых прямоугольников, она аппроксимируется спиралью, построенной по методу Дюрера. Золотой прямоугольник можно разделить на квадрат и подобный ему прямоугольник, его, в свою очередь, разделить тем же образом, и продолжать этот процесс произвольное число раз. Если в эти квадраты вписать соединённые между собой четвертинки окружностей, то получается спираль, изображенная на первом рисунке.

Ещё одной аппроксимацией является спираль Фибоначчи , которая строится подобно вышеописанной спирали, за исключением того, что начинают с прямоугольника из двух квадратов и добавляют потом к большей стороне прямоугольника квадрат такой же длины. Поскольку отношение между соседними числами Фибоначчи стремится к золотой пропорции, спираль всё больше приближается к золотой спирали по мере добавления квадратов (см. второй рисунок).

Спирали в природе

В природе встречаются приближения к логарифмическим спиралям с коэффициентом роста равным φ k . Так раковины моллюсков Nautilus pompilius и окаменелых аммонитов хорошо описываются при k = 2, а раковины некоторых улиток при k = 1. Отношение длин трёх витков спирали уха у человека равно φ , что соответствует спирали с k = 1. Рукава спиральных галактик , несмотря на существующие утверждения , если и описываются логарифмической, то не золотой спиралью. В данном случае, описание ею является проявлением случайной близости. Недавний анализ спиралей, встречающихся в роговичном эпителии мышей, показал, что там встречаются как золотая, так и другие логарифмические спирали.

См. также

Примечания

  1. Выгодский М. Я. Справочник по высшей математике. М.: Наука, 1977, с. 884.
  2. Прохоров А. Золотая спираль, Квант, 1984, №9.
  3. Аракелян. Г. Математика и история золотого сечения, М.: Логос, 2014, с. 50.
  4. Albrecht Durer (1525): Unterweysung der Messung mit dem Zirkel und Richtscheyt, in Linien Ebnen und gantzen Corporen. Verlag Dr. Alfons Uhl (Reprint 2000), Nordlingen, ISBN 3 921503 65 5 (Engl. Transl.: The Painter’s Manual, Abaris Books, New York 1977).
  5. , с. 14–16.
  6. А.Н. Ковалев, Еще раз о золотых спиралях // Академия Тринитаризма, М., Эл № 77-6567, публ.23545, 13.07.2017 от 13 октября 2017 на Wayback Machine
  7. Петухов С. В. Матричная генетика, алгебры генетического кода, помехоустойчивость. — Москва: Регулярная и хаотическая динамика, 2008. — С. 107.
  8. , с. 3.
  9. , с. 22–38.

Литература

  • David Darling. The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. — John Wiley & Sons, 2004. — ISBN 9780471270478 .
  • Ivars Peterson. Sea Shell Spirals. — Society for Science & the Public, 2005-04-01.
  • Keith Devlin. The myth that will not go away. — May 2007.
  • Jerry Rhee, Talisa Mohammad Nejad , Olivier Comets, Sean Flannery, Eine Begum Gulsoy, Philip Iannaccone , Craig Foster. Promoting convergence: The Phi spiral in abduction of mouse corneal behaviors // Complexity. — 2015. — Т. 20 , вып. 3 . — С. 22–38 . — doi : .
  • Midhat Gazale. Gnomon: From Pharaohs to Fractals. — Princeton University Press, 1999. — ISBN 9780691005140 .
  • Charles B. Madden. Fractals in Music: introductory mathematics for musical analysis. — High Art Press, 1999. — ISBN 0-9671727-6-4 .
  • Klaus Mainzer. Symmetries of Nature: A Handbook for Philosophy of Nature and Science. — Walter de Gruyter, 1996. — ISBN 3-11-012990-6 .
  • Priya Hemenway. . — Sterling Publishing Co, 2005. — ISBN 1-4027-3522-7 .
Источник —

Same as Золотая спираль