Солнечная генерация (электроэнергетика)
- 1 year ago
- 0
- 0
Солнечная энергетика — направление альтернативной энергетики , основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде.
Солнечная энергетика использует Солнце , возобновляемый источник энергии , и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования . Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии .
Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой или солью для последующего использования нагретой воды для отопления, горячего водоснабжения или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP — Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света, этот луч используется как источник тепловой энергии для нагрева рабочей жидкости.
В 2020 году общая установленная мощность всех работающих солнечных панелей на Земле составила 760 ГВт . . В 2019 году общая установленная мощность всех работающих солнечных панелей на Земле составила 635 ГВт ; в том году работающие солнечные панели на Земле всего произвели 2,7 % мировой электроэнергии .
Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли ), равен 1367 Вт /м² ( солнечная постоянная ). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в π раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.
Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.
Годовая выработка электроэнергии в мире на СЭС | |||
---|---|---|---|
Год | Энергия ГВт·ч | Годовой прирост | Доля от всей |
2004 | 2,6 | ― | 0,01 % |
2005 | 3,7 | 42 % | 0,02 % |
2006 | 5,0 | 35 % | 0,03 % |
2007 | 6,8 | 36 % | 0,03 % |
2008 | 11,4 | 68 % | 0,06 % |
2009 | 19,3 | 69 % | 0,10 % |
2010 | 31,4 | 63 % | 0,15 % |
2011 | 60,6 | 93 % | 0,27 % |
2012 | 96,7 | 60 % | 0,43 % |
2013 | 134,5 | 39 % | 0,58 % |
2014 | 185,9 | 38 % | 0,79 % |
2015 | 253,0 | 36 % | 1,05 % |
2016 | 301,0 | 33 % | 1,3 % |
В 1985 году все установленные мощности мира составляли 0,021 ГВт.
В 2005 году производство фотоэлементов в мире составляло 1,656 ГВт.
На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии .
В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.
Крупнейшие производители фотоэлементов в 2012 году , МВт:
В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт .
Лидером по установленной мощности является Евросоюз , среди отдельных стран — Китай. По совокупной мощности на душу населения лидер — Германия.
В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии .
В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок .
В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово , в результате чего его суммарная установленная мощность возросла до 100 МВт . Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков — 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.
В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт .
В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек .
В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 % . Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20—25 % потребностей человечества в электричестве и сократит выбросы углекислоты. По данным Международного энергетического агентства , к середине XXI века при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч ТВ·ч, или 20—25 % всего необходимого электричества, что обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно .
Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей .
Тем не менее, по прогнозам, себестоимость генерации электроэнергии солнечными электростанциями к 2020 году снизится до себестоимости генерации с использованием ископаемого топлива и переход к использованию солнечных электростанций станет экономически выгодным .
Из-за низкой эффективности преобразования солнечной энергии в электричество (к. п. д. не более 30%) большая часть солнечной энергии идут на нагрев солнечных батарей, температура которых достигает 50—70 °C. .
Типичные факторы стоимости для солнечной энергии для случая фотовольтоники включают стоимость модулей, конструкций для их размещения, проводки, инверторов, стоимости рабочей силы, любой земли, которая может потребоваться, подключение к сети, техническое обслуживание и масштабы солнечную инсоляцию, которую место установки СЭС.
Фотоэлектрические системы не используют топливо, а срок службы модулей обычно составляет от 25 до 40 лет. Таким образом, первоначальные капитальные и финансовые затраты составляют от 80 до 90 % стоимости солнечной энергии .
Расходы на солнечные модули высокой мощности со временем значительно снизились. В США, начиная с 1982 года стоимость за кВт составляла примерно 27 000 $, а в 2006 году стоимость снизилась примерно до 4000 $/кВт. Фотоэлектрическая система в 1992 году стоила примерно 16 000 $/кВт, а в 2008 году она упала примерно до 6000 $/кВт .
В 2021 году в США солнечная энергия для жилых домов стоила от 2 до 4 $ за ватт (но стоила значительно больше) , а стоимость солнечных батарей в установках, обслуживающих коммунальные нужды составляла около 1 $/Вт .
Производительность солнечной энергии в регионе зависит от солнечной радиации, которая меняется в течение дня и года и зависит от широты и климата. Выходная мощность фотоэлектрической системы также зависит от температуры окружающей среды, скорости ветра, солнечного спектра, местных условий загрязнения и других факторов.
Энергия ветра на суше, как правило, является самым дешевым источником электроэнергии в Северной Евразии , Канаде , некоторых частях Соединенных Штатов и Патагонии в Аргентине, тогда как в других частях мира в основном используется солнечная энергия (или реже комбинация ветра, солнца и других видов энергия с низким содержанием углерода .
Места с наибольшей годовой солнечной радиацией находятся в засушливых тропиках и субтропиках. Пустыни, лежащие в низких широтах, обычно имеют мало облаков и могут получать солнечный свет более десяти часов в день .
С помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы . Простейший вариант светового колодца — отверстие в потолке юрты . Световые фонари применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы и т. д. Световой колодец диаметром 300 мм способен освещать площадь 8 м². Один колодец позволяет в европейских условиях предотвратить ежегодный выброс в атмосферу до 7,4 тонн СО 2 . Световые колодцы с оптоволокном разработаны в 2004 году в США . В верхней части такого колодца применяются параболические коллекторы. Применение солнечных колодцев позволяет сократить потребление электроэнергии, в зимнее время — сократить дефицит солнечного света у людей, находящихся в здании .
Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.
В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла 0,09—0,12 $ за кВт·ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до 0,04—0,05 $ к 2015—2020 годам.
В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа .
На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта . К 2020 году страны Евросоюза планируют построить 26,3 ГВт солнечных термальных мощностей .
Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С . Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства простейшей «солнечной кухни» составляет $3—$7.
Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. В развивающихся странах для приготовления пищи активно используются дрова. Использование дров для приготовления пищи приводит к массированной вырубке лесов и вреду для здоровья. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн т СО 2 . В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров. Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.
Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 году Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО 2 на 1,7 млн т в 2008—2012 годах. В будущем Финляндия сможет продавать квоты на эти выбросы
Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях , самолётах, дирижаблях и т. д.
Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства или для электродвигателя электрического транспорта.
В Италии и Японии фотоэлектрические элементы устанавливают на крыши железнодорожных поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.
Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius . Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.
В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте , питающемся только солнечной энергией, преодолев расстояние в 258 км со скоростью 48 км/ч . В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам ( БПЛА ) на солнечной энергии, способным держаться в воздухе чрезвычайно долго — месяцы и годы. Такие системы могли бы заменить или дополнить спутники.
{{
cite news
}}
: Википедия:Обслуживание CS1 (формат даты) (
ссылка
)
{{
cite news
}}
: Википедия:Обслуживание CS1 (формат даты) (
ссылка
)
{{
cite news
}}
: Википедия:Обслуживание CS1 (формат даты) (
ссылка
)
title=
в шаблоне
{{
cite web
}}
.
. Дата обращения: 23 июня 2014. Архивировано из
12 ноября 2020 года.