Interested Article - Ортодромия

Ортодрома делит сферу на две полусферы

Ортодро́мия, ортодро́ма (от др.-греч. «ὀρθός» — «прямой» и «δρόμος» — «бег», «путь») в геометрии — кратчайшая линия между двумя точками на поверхности вращения , частный случай геодезической линии .

В картографии и навигации ортодромия — название кратчайшего расстояния между двумя точками на поверхности Земли. В судо- и самолётовождении, где Земля принимается за шар , ортодромия представляет собой дугу большого круга . Через две точки на земной поверхности, расположенные не на противоположных концах одного диаметра Земли, можно провести только одну ортодромию.

Частными случаями ортодромии являются меридианы и единственная параллель экватор . Ортодромия, в отличие от локсодромии , может пересекать меридианы под разными углами.

На картах

В большинстве картографических проекций ортодромии изображаются кривыми линиями (за исключением, быть может, меридианов и экватора). Это неудобно для прокладки кратчайших маршрутов. В гномонической проекции все ортодромии изображены прямыми линиями.

Ортодромия на картах в проекции Меркатора , если она не совпадает с меридианом или экватором, — это кривая, обращённая выпуклостью к ближайшему полюсу .

Расчёт ортодромии

Длина, угловая длина, начальный и конечный азимуты, широты промежуточных точек ортодромии рассчитываются по следующим формулам (выводятся с помощью соотношений сферической тригонометрии ) .

Угловая длина ортодромии:

Длина ортодромии:

Начальный азимут:

Конечный азимут:

Широта промежуточной точки как функция долготы:

Обозначения:

δ — угловая длина ортодромии,
D — длина ортодромии,
и — широта и долгота точки отбытия,
и — широта и долгота точки прибытия,
и — широта и долгота промежуточной точки на ортодромии,
l — длина дуги 1° меридиана (на Земле l =111,1 км). Формулы приведены без учёта полярного сжатия. В случае расчётов в радианах , а не в градусах, l заменяется на радиус Земли (который равен длине дуги в 1 радиан на поверхности Земли).

См. также

Примечания

  1. . Дата обращения: 3 июня 2020. 3 июня 2020 года.
  2. Михайлов В.С., Кудрявцев В.Г., Давыдов В.С. 26.2. Основные формулы ортодромии. Способы её задания // . — Киев, 2009. 25 июля 2012 года.

Ссылки

Источник —

Same as Ортодромия