Interested Article - Ядерные тельца

Я́дерные тельца́ ( англ. nuclear bodies ) — субкомпартменты внутри ядра , не окружённые мембранами , но представляющие собой отдельные, морфологически различимые комплексы белков и РНК . К числу ядерных телец относят ядрышко , тельце Кахаля и другие немембранные структуры. В основе биогенеза ядерных телец лежат одни и те же общие принципы, такие как способность к формированию (с нуля), самоорганизация, а также роль РНК как структурного элемента. Контроль биогенеза ядерных телец необходим для правильного изменения архитектуры ядра в ходе клеточного цикла и лежит в основе ответа клетки на внутри- и внеклеточные стимулы. Многие ядерные тельца осуществляют специфические функции — например, синтез и процессинг пре-рибосомных РНК в ядрышке, накопление и сборку компонентов сплайсосом в ядерных спеклах или накопление молекул РНК в параспеклах . Механизмы, которые обеспечивают выполнение ядерными тельцами этих функций, очень разнообразны. В некоторых случаях ядерное тельце может служить местом протекания определённых процессов, например, транскрипции . В других случаях ядерные тельца, по-видимому, опосредованно регулируют локальные концентрации своих компонентов в нуклеоплазме . Хотя большинство ядерных телец имеет сферическую форму, большинство из них можно идентифицировать по уникальной морфологии, которая выявляется при помощи электронной микроскопии , и по расположению в ядре. Подобно цитоплазматическим органеллам , ядерные тельца содержат специфический набор белков, которые определяют их структуру на молекулярном уровне .

Физические свойства

Многие ядерные тельца ведут себя подобно капле . Например, в ооцитах лягушки Xenopus ядрышки имеют почти идеально сферическую форму. Когда два ядрышка встречаются, они сливаются друг с другом, образуя ядрышко большего размера. Подобное слияние описано для телец Кахаля, телец гистоновых локусов , ядерных спеклов и других телец. Однако некоторые ядерные тельца, например, ядрышко, состоят из нескольких структурных компонентов, о чём свидетельствуют данные электронной микроскопии. На первый взгляд, это противоречит представлению о ядерных тельцах как о каплях вязкой жидкости. В ооцитах Xenopus и гранулярный компонент, и плотный фибриллярный компонент ядрышек могут подвергаться слиянию и обмениваться белками, но гранулярный компонент делает это быстрее. Ключевые белки гранулярного и плотного фибриллярного компонентов — нуклеофозмин и фибрилларин соответственно — в очищенном виде могут формировать капли в присутствии РНК, однако капли нуклеофозмина сливаются и обмениваются белками быстрее, чем белки фибрилларина. Физически капли нуклеофозмина представляют собой вязкую жидкость, а капли фибрилларина вязкоупруги , что и объясняет их замедленную динамику. Когда очищенные нуклеофозмин и фибрилларин объединяют в одну каплю, они образуют несмешивающиеся фазы, похожие на ядрышки: маленькие капельки фибрилларина находятся внутри более крупных капель нуклеофозмина. Несмешиваемость фаз обеспечивается разностью в поверхностном натяжении , так как капли фибрилларина в водном растворе более гидрофобны , чем капли нуклеофозмина. Возможно, похожим образом объясняется неспособность разных ядерных телец сливаться друг с другом. Например, ядрышки и тельца Кахаля нередко находятся в близком контакте, но никогда не сливаются, возможно, из-за высокого межфазного энергетического барьера .

Динамика

Общим свойством всех ядерных телец является их структурная стабильность. Отдельные ядерные тельца различимы на протяжении интерфазы — от начала G1-фазы до выхода из G2-фазы . В течение интерфазы ядерные тельца подвергаются динамическим перемещениям внутри ядра, причём чем крупнее тельце, тем меньше оно перемещается. Крупные тельца, такие как ядрышки и спеклы, достигающие 2—3 мкм в диаметре, практически неподвижны и способны лишь к ограниченному локальному движению. Более мелкие тельца, такие как тельца Кахаля и PML-тельца , имеющие размер от 500 нм до 1 мкм , интенсивно перемещаются по ядру и претерпевают частые слияния и разделения .

Несмотря на общую структурную стабильность, ядерные тельца характеризуются значительной внутренней динамичностью. Основным компонентом ядерных телец являются особые белки, которые присутствуют и в нуклеоплазме, хотя в существенно меньшей концентрации. Эксперименты по фотообесцвечиванию показали, что ядерные тельца интенсивно обмениваются с нуклеоплазмой своими основными компонентами. В течение нескольких минут молекулярный состав ядерных телец полностью обменивается на прежде нуклеоплазматические молекулы .

Из-за отсутствия окружающих мембран форма и размер ядерных телец определяются суммой взаимодействий молекул, входящих в их состав. Среди таких взаимодействий не выявлено ковалентных , поэтому молекулы внутри телец взаимодействуют друг с другом посредством нековалентных слабых связей. Ключевым определяющим фактором является баланс приходящих и уходящих молекул: при увеличении потока приходящих молекул размер тельца увеличивается, а его снижение или увеличение потока уходящих молекул приводят к уменьшению тельца. Молекулярные механизмы, определяющие такой баланс, плохо изучены, однако в их число входят посттрансляционные модификации белков, входящих в состав ядерных телец. Контроль количества ядерных телец также плохо понятен. Даже количество ядрышек, которые формируются только вокруг фиксированного числа участков хромосом ядрышковых организаторов , варьирует между разными тканями и типами клеток. Известно, что количество телец Кахаля регулируется маркерным белком коилином : если несколько ключевых сайтов фосфорилирования этого белка мутируют , количество телец Кахаля сокращается. Более того, размер и количество ядерных телец зависят от физиологических условий. Так, число ядрышек увеличено в активно пролиферирующих клетках. В лимфоцитах , которые активно синтезируют белки и потому нуждаются в больших количествах рРНК , ядрышки увеличиваются в размерах. Количество PML-телец положительно связано со стрессовыми условиями .

Крупные ядерные тельца, как правило, в значительной степени неподвижны, хотя и способны к небольшим перемещениям и слиянию друг с другом. Как показали эксперименты с экспериментально индуцированными интерфазными проядрышками, ведущую роль в ограничении подвижности ядерных телец играет гетерохроматин . Движение проядрышек было независимо от актина , а их слияния происходили при случайных столкновениях. При этом каждое тельце занимало отдельный компартмент, ограниченный гетерохроматином. Искусственная сверхконденсация хроматина привела к значительному снижению частоты слияния телец и, следовательно, ограничила их подвижность . Подвижность ядерных телец имеет и функциональное значение, оказывая влияние на различные аспекты функционирования генома .

Формирование

По способу формирования ядерные тельца можно разделить на два класса: зависящие от активности и не зависящие от активности. К первому классу относятся тельца, которые формируются в местах протекания определённых ядерных процессов, таких как транскрипция, и их морфология строго зависит от интенсивности процесса. К числу таких телец относится ядрышко, которое формируется на транскрибирующихся кластерах генов рРНК (ядрышковых организаторах). При подавлении транскрипции рДНК ядрышко подвергается быстрой структурной реорганизации, а доставка в ядро дополнительных генов рРНК на плазмидах приводит к появлению дополнительных ядрышек. Тельца гистоновых локусов формируются вокруг генов гистонов при активации транскрипции этих генов в начале репликации ДНК в ходе S-фазы . К этому же классу относятся стрессовые ядерные тельца и ядерные спеклы. Ко второму классу относят тельца, для формирования которых нет нужды в каком-то ядерном процессе. Такие ядерные тельца образуются в нуклеоплазме и впоследствии могут ассоциироваться с каким-то конкретным местом в ядре. Таковы тельца Кахаля и PML-тельца. Иногда они располагаются в определённых местах ядра и даже связаны со специфическими локусами, однако формируются в нуклеоплазме и приобретают такую связь позже. Например, при активации генов малых ядерных РНК они подвергаются направленному, актин-зависимому перемещению к ранее сформированным тельцам Кахаля .

Формирование ядерного тельца начинается с события нуклеации. В ходе нуклеации ключевые компоненты тельца утрачивают подвижность, группируются вместе и привлекают другие «строительные блоки». У телец, зависящих от активности, нуклеацию запускают процессы, необходимые для формирования телец. В случае ядрышка нуклеация происходит при накоплении ядрышковых белков на рДНК и пре-рРНК, а в случае телец гистоновых локусов — при скоплении факторов процессинга 3'-конца гистоновых пре-мРНК. У телец, не зависящих от активности, нуклеаторами, вероятно, служат структурные белки или РНК, однако к настоящему моменту подобные нуклеаторы не были идентифицированы .

Некоторые ядерные тельца могут формироваться de novo (с нуля) в физиологических или экспериментальных условиях. Например, возможно формирование ядрышек de novo при введении в клетки минигенов рРНК в составе плазмид. Подобное явление описано для оогенеза у лягушки Xenopus , в ооцитах которой при этом процессе происходят амплификация тысяч внехромосомных генов рРНК и попутное формирование множества маленьких ядрышек. Ядерные спеклы тоже могут формироваться de novo при активации процессов транскрипции в клетке после глобального подавления. При вирусных инфекциях происходит быстрое формирование PML-телец: ключевые белки PML-телец окружают вирусный геном с образованием полноценного тельца. Эта реакция, по-видимому, служит реакцией врождённого иммунитета , направленной против вирусов. Однако наиболее отчётливо формирование de novo показано для телец Кахаля. Если в клетках, в норме не имеющих телец Кахаля, временно вызвать сверхэкспрессию компонентов этих телец, то тельца Кахаля действительно будут формироваться. Кроме того, если искусственно иммобилизировать на хроматине в случайных локусах компоненты телец Кахаля, то они будут формироваться в этих местах .

В состав многих ядерных телец входят молекулы РНК, которые нередко играют важную роль в сборке этих телец. РНК может участвовать в биогенезе ядерных телец двумя способами. Во-первых, РНК могут служить шаблонами для сборки телец, например, в случае большинства телец, зависящих от активности, которые формируются вокруг сайтов с активной транскрипцией. Такие РНК привлекают входящие в состав ядерных телец , запуская формирование телец. Во-вторых, РНК может выступать архитектурным элементом в ядерных тельцах. Например, для формирования параспеклов необходима (также известная как MEN-ε/β) — длинная стабильная полиаденилированная молекула РНК, локализованная в ядре. Нокдаун этой РНК при помощи РНК-интерференции приводит к разрушению параспеклов. Кроме того, параспеклы не выявляются в ядрах человеческих эмбриональных стволовых клеток , которые не экспрессируют NEAT1 .

Теоретически возможны два основных механизма сборки ядерных телец:

  • сборка может включать ряд последовательных жёстко контролируемых шагов;
  • сборка может происходить в результате случайных взаимодействий компонентов ядерных телец без чёткого порядка.

Описанный выше эксперимент по сборке телец Кахаля в местах иммобилизации на хроматине ключевых компонентов этих телец свидетельствует в пользу последнего пути. Однако вопрос о том, что происходит при сборке телец, зависящих от активности, остаётся открытым .

В основе формирования ядерных телец могут лежать не только взаимодействия белок-белок и белок-РНК, но и ( англ. Liquid–liquid phase transitions, LLPS ), которые обеспечиваются способствующими агрегации доменами белков ядерных телец. С помощью модели фазовых переходов можно объяснить жидкостно-подобные свойства ядерных телец, такие как способность к слиянию и разделению, а также их быструю внутриядерную динамику. Возможно, что и гетерохроматин сам по себе обладает свойствами капель жидкости . Экспериментально показано, что белки и , входящие в состав цитоплазматических стрессовых гранул и параспеклов, могут обеспечивать жидкостно-жидкостное разделение фаз ( англ. liquid–liquid phase separation, LLPS ) в присутствии РНК. Показано, что некоторые белковые домены подвергаются LLPS, только когда комбинируются в особых концентрациях. В каждом ядерном тельце может быть своё соотношение белков, обеспечивающих LLPS. LLPS подвергаются белковые домены, связанные с агрегацией, такие как прионоподобные домены, а также домены, способствующие полимеризации (например, ( англ. coiled-coil )), и участки с невыраженной структурой ( англ. low complexity regions ) . Разнообразные ядерные структуры, образовавшиеся за счёт разделения фаз, задействованы на различных этапах экспрессии генов , таких как транскрипция и процессинг РНК , оказывают влияние на эпигенетический статус генов и играют роль в развитии многих заболеваний . В формировании ядерных телец за счёт разделения фаз могут принимать участие фосфоинозитиды. В 2018 году в ядрах клеток самых разных организмов были обнаружены тельца, содержащие ; они известны как ядерные липидные островки ( англ. Nuclear Lipid Islets, NLIs ). Вероятно, ядерные липидные островки играют важную роль в регуляции экспрессии генов, выступая в качестве платформ для связывания различных белков и облегчая формирование .

Ядерные тельца и митоз

Сборка и разборка ядерных телец играют важную роль в их наследовании дочерними клетками при делении . Некоторые ядерные тельца, которые присутствуют в клетках в большом количестве копий, при митозе не разбираются, а разделяются примерно поровну между дочерними клетками за счёт их случайного распределения по объёму клетки. Другие ядерные тельца, напротив, разбираются при клеточном делении и снова собираются при вступлении дочерних клеток в G1-фазу .

Так, ядрышко при митозе разбирается, поскольку транскрипция рРНК приостанавливается из-за фосфорилирования транскрипционных факторов , а также факторов процессинга рРНК. В начале профазы на периферии конденсированных хромосом накапливаются непроцессированные или частично процессированные пре-рРНК вместе со многими факторами процессинга. После разрушения ядерной оболочки они выходят в цитоплазму и в анафазе формируют множество очень подвижных мелких телец. В начале телофазы , когда происходит восстановление транскрипции генов рРНК, эти мелкие тельца разбираются, и далее пре-рРНК и факторы процессинга образуют проядрышковые тельца ( англ. prenucleolar bodies ) в нуклеоплазме только что сформированных ядер дочерних клеток. В конце телофазы хромосомы деконденсируются, и пре-рРНК и факторы процессинга выходят из проядрышковых телец, формируя ядрышко вокруг ядрышковых организаторов. Для формирования ядрышка после митоза также необходимы активность РНК-полимеразы I и возобновление процессинга пре-рРНК .

В начале митоза ядерные спеклы разбираются, а их компоненты распределяются беспорядочно по цитоплазме. Сборка спеклов начинается в телофазе. Параспеклы остаются стабильными на протяжении всего клеточного цикла вплоть до анафазы, когда они становятся беспорядочно разбросанными по клетке (цитоплазматические параспеклы). Цитоплазматические параспеклы исчезают в начале телофазы, а формирование ядерных параспеклов начинается по завершении клеточного деления. Тельца гистоновых локусов существуют до ранней прометафазы и окончательно разбираются в метафазе , а заново образуются в телофазе. Тельца Кахаля в начале митоза не разбираются, а выходят в цитоплазму, где не находятся в физическом контакте с конденсированными хромосомами. Количество и размер телец Кахаля почти не меняются от метафазы до телофазы. Когда в телофазе формируется ядерная оболочка, цитоплазматические тельца Кахаля разбираются, а их ключевой компонент — белок коилин — быстро заходит в ядро, где поначалу локализуется беспорядочно, но к G1-фазе в дочерних клетках формируются нормальные ядерные тельца Кахаля. Количество PML-телец в начале митоза уменьшается, поскольку их главный компонент — белок PML — образует характерные митотические скопления, утрачивая связь с другими белками PML-телец. Образование в ядре PML-телец начинается в G1-фазе, однако даже в течение G1-фазы в цитоплазме всё ещё обнаруживаются большие скопления белка PML, которые далее медленно сокращаются .

Разнообразие

В таблице ниже перечислены ключевые ядерные тельца, их свойства и выполняемые функции .

Ядерное тельце Функции Характерные компоненты Типичный размер (в мкм) Количество на ядро
Ядрышко Биогенез рибосом Машинерия , факторы процессинга рРНК и сборки рибосомных субъединиц 3—8 1—4
Спеклы Накопление и сборка факторов сплайсинга Факторы сплайсинга пре-мРНК 2—3 20—50
Стрессовые ядерные тельца Регуляция транскрипции и сплайсинга в условиях стресса , HAP 1—2 3—6
Тельце гистоновых локусов Процессинг пре-мРНК гистонов , FLASH, мяРНП 0,2—1,2 2—4
Тельце Кахаля Биогенез, созревание и кругооборот малых РНК Коилин , 0,2—1,5 1—10
PML-тельце Регуляция стабильности генома, репарация ДНК , контроль транскрипции, защита от вирусов PML 0,1—1 10—30
Параспеклы Регуляция мРНК, редактирование РНК Некодирующие РНК NEAT1/MENε/β, белки PSP1, p54 nrb /NONO 0,2—1 2—20
Околоядрышковый компартмент Посттранскрипционная регуляция набора РНК, синтезированных РНК-полимеразой III PTB 0,2—1 1—2

Ядрышко

Электронная микрофотография клеточного ядра, ядрышко тёмно окрашено

Ядрышко — это отдельная плотная структура в ядре. Она не окружена мембраной и формируется в области расположения рДНК — тандемных повторов генов рибосомной РНК (рРНК) , называемых ядрышковыми организаторами . Главные функции ядрышка — синтез рРНК и образование рибосом . Структурная целостность ядрышка зависит от его активности, и инактивация генов рРНК приводит к смешению ядрышковых структур .

На первой стадии образования рибосом фермент РНК-полимераза I транскрибирует рДНК и образует пре-рРНК, которая далее разрезается на 5,8S, 18S и 28S рРНК . Транскрипция и посттранскрипционный процессинг рРНК происходят в ядрышке при участии малых ядрышковых РНК (мякРНК), некоторые из которых происходят из сплайсированных интронов мРНК генов, кодирующих белки, связанные с работой рибосом. Собранные рибосомные субъединицы — это самые крупные структуры, проходящие через ядерные поры .

При рассматривании под электронным микроскопом в ядрышке можно выделить три компонента: фибриллярные центры (ФЦ), окружающий их плотный фибриллярный компонент (ПФК) и гранулярный компонент (ГК), который, в свою очередь, окружает ПФК. Транскрипция рРНК происходит в ФЦ и на границе ФЦ и ПФК, поэтому при активации образования рибосом ФЦ становятся хорошо различимы. Разрезание и модификации рРНК происходят в ПФК, а последующие этапы образования рибосомных субъединиц, включающие загрузку рибосомных белков, происходят в ГК .

Тельце Кахаля

Ядра клеток мыши (синие), содержащие тельца Кахаля (зелёные точки). Изображение получено методом флуоресцентной микроскопии (коилин — маркер телец Кахаля — сращён с зелёным флуоресцентным белком).

Тельце Кахаля (ТК) — ядерное тельце, имеющееся у всех эукариот . Оно идентифицируется по наличию сигнатурного белка коилина и специфических РНК (scaРНК). В ТК также содержится белок SMN ( англ. survival of motor neurons ). В ТК наблюдается высокая концентрация сплайсирующих малых ядерных рибонуклеопротеинов (мяРНП) и других факторов процессинга РНК, поэтому считается, что ТК служат местами сборки и/или посттранскрипционной модификации факторов сплайсинга. ТК присутствует в ядре во время интерфазы, но исчезает в митозе. В биогенезе ТК прослеживаются свойства самоорганизующейся структуры .

Когда внутриклеточная локализация SMN впервые изучалась методом иммунофлуоресценции , то белок обнаруживался во всей цитоплазме, а также в ядрышковом тельце, сходном по размеру с ТК и часто расположенном рядом с ним. По этой причине данное тельце было названо «близнецом ТК» ( англ. gemini of CB ) или просто gem. Однако оказалось, что линия клеток HeLa , в которой было открыто новое тельце, была необычной: в других линиях клеток человека, а также у плодовой мушки Drosophila melanogaster SMN колокализовался с коилином в ТК. Поэтому в общем случае SMN можно рассматривать как важный компонент ТК, а не как маркер отдельного ядерного тельца .

Тельце гистоновых локусов

Тельце гистоновых локусов ( англ. histone locus body, HLB ) содержит факторы, необходимые для процессинга пре-мРНК гистонов. Как и следует из названия, тельца гистоновых локусов ассоциированы с генами, кодирующими гистоны; поэтому предполагается, что в тельцах гистоновых локусов концентрируются факторы сплайсинга. Тельце гистоновых локусов присутствует в клетке во время интерфазы и исчезает с наступлением митоза. Тельце гистоновых локусов нередко рассматривается вместе с тельцем Кахаля по нескольким причинам. Во-первых, в некоторых тельцах гистоновых локусов содержится маркер телец Кахаля — коилин. Во-вторых, эти тельца нередко физически находятся рядом, поэтому между ними наблюдается некоторое взаимодействие. Наконец, очень крупные тельца Кахаля ооцитов земноводных обладают свойствами обоих телец .

PML-тельца

Тельца промиелоцитной лейкемии ( англ. Promyelocytic leukaemia bodies ), или PML-тельца, — сферические тельца, разбросанные по всей нуклеоплазме и достигающие около 0,1—1,0 мкм в диаметре. Они известны также под такими названиями, как ядерный домен 10 ( англ. nuclear domain 10 (ND10) ), тельца Кремера ( англ. Kremer bodies ) и онкогенные домены PML ( англ. PML oncogenic domains ). Тельца PML названы по одному из своих ключевых компонентов — белку промиелоцитной лейкемии (PML). Они часто наблюдаются ассоциированными с тельцами Кахаля и тельцами деления ( англ. cleavage body ) . PML-тельца принадлежат ядерному матриксу и могут быть задействованы в таких процессах, как репликация ДНК , транскрипция и эпигенетический сайленсинг генов . Ключевым фактором организации этих телец выступает белок PML, который привлекает другие белки; последние, по представлениям XXI века, объединены лишь тем, что они SUMOилированы . Мыши , у которых ген PML делетирован , лишены PML-телец, однако развиваются и живут нормально — это означает, что PML-тельца не выполняют незаменимых биологических функций .

Спеклы

Спеклы ( англ. speckle ) — это ядерные тельца, которые содержат факторы сплайсинга пре-мРНК и располагаются в интерхроматиновых участках нуклеоплазмы клеток млекопитающих . При флуоресцентной микроскопии спеклы выглядят как пятнистые тельца неправильной формы, различных размеров, а при электронной микроскопии — как кластеры интерхроматиновых гранул. Спеклы — динамические структуры, и содержащиеся в них белки и РНК могут перемещаться между спеклами и другими ядерными тельцами, включая участки активной транскрипции. На основании исследований состава, структуры и поведения спеклов была создана модель, объясняющая функциональную компартментализацию ядра и организацию механизма экспрессии генов , сплайсирующих малые ядерные рибонуклеопротеины и другие белки, необходимые для сплайсинга пре-мРНК . Из-за изменяющихся потребностей клетки состав и расположение спеклов изменяются согласно транскрипции мРНК и посредством регуляции фосфорилирования специфических белков . Сплайсирующие спеклы также известны как ядерные спеклы, компартменты сплайсирующих факторов, кластеры интерхроматиновых гранул и B-снурпосомы ( англ. B snurposomes ) . B-снурпосомы найдены в ядрах ооцитов земноводных и зародышах плодовой мушки Drosophila melanogaster . На электронных микрофотографиях B-снурпосомы предстают прикреплёнными к тельцам Кахаля или отдельно от них. Кластеры интерхроматиновых гранул служат местами скопления факторов сплайсинга .

Параспеклы

Микрофотография клеток HeLa с меченым белком параспеклов PSP1: 1. цитоплазма; 2. ядро; 3. ядрышко; 4. параспеклы

Параспеклы — это ядерные тельца неправильной формы, располагающиеся в интерхроматиновом пространстве ядра . Впервые они были описаны у клеток HeLa, у которых имеется 10—30 параспеклов на ядро, но сейчас параспеклы обнаружены во всех первичных клетках человека, в клетках трансформированных линий и на срезах тканей . Своё название они получили из-за своего расположения в ядре — вблизи спеклов .

Параспеклы — динамические структуры, которые изменяются в ответ на изменения в метаболической активности клетки. Они зависят от транскрипции , и в отсутствие транскрипции, проводимой РНК-полимеразой II , параспеклы исчезают, а все входящие в их состав белки (PSP1, p54nrb, PSP2, CFI(m)68 и PSF) формируют серповидный околоядрышковый кэп . Этот феномен наблюдается в ходе клеточного цикла: параспеклы присутствуют в интерфазе и всех фазах митоза, за исключением телофазы . В ходе телофазы формируются дочерние ядра, и РНК-полимераза II ничего не транскрибирует, поэтому белки параспеклов формируют околоядрышковый кэп . Параспеклы участвуют в регуляции экспрессии генов, накапливая те РНК, где есть двухцепочечные участки, которые подвергаются редактированию, а именно превращению аденозина в инозин . Благодаря этому механизму параспеклы задействованы в контроле экспрессии генов при дифференцировке , вирусной инфекции и стрессе .

Околоядрышковый компартмент

Околоядрышковый компартмент (ОК) — ядерное тельце неправильной формы, которое характеризуется тем, что располагается на периферии ядрышка. Несмотря на физическую связь, эти два компартмента структурно различны. Обычно ОК обнаруживают в клетках злокачественных опухолей . ОК — динамическая структура и содержит очень много РНК-связывающих белков и РНК-полимеразу III. Структурная стабильность ОК обеспечивается транскрипцией, осуществляемой РНК-полимеразой III, и наличием ключевых белков. Поскольку присутствие ОК обычно связано со злокачественностью и со способностью к метастазированию , их рассматривают как потенциальные маркеры рака и других злокачественных опухолей. Показана ассоциация ОК со специфическими локусами ДНК .

Стрессовые ядерные тельца

Стрессовые ядерные тельца формируются в ядре при тепловом шоке. Они образуются при непосредственном взаимодействии транскрипционного фактора теплового шока 1 ( ) и перицентрических тандемных повторов в последовательности сателлита III, что соответствует сайтам активной транскрипции некодирующих транскриптов сателлита III. Распространено мнение, что такие тельца соответствуют очень плотно упакованным формам рибонуклеопротеиновых комплексов. Считается, что в клетках, подвергающихся стрессу, они участвуют в быстрых, временных и глобальных изменениях в экспрессии генов посредством различных механизмов — например, ремоделирования хроматина и захватывания факторов транскрипции и сплайсинга. В клетках, находящихся в нормальных (не стрессовых) условиях, стрессовые ядерные тельца обнаруживаются редко, однако их количество резко увеличивается под действием теплового шока. Стрессовые ядерные тельца найдены только в клетках человека и других приматов .

Ядерные тельца-сироты

Ядерные тельца-сироты ( англ. orphan nuclear bodies ) — нехроматиновые ядерные компартменты, которые исследованы гораздо хуже, чем другие, хорошо охарактеризованные, структуры ядра. Некоторые из них выступают как места, в которых белки модифицируются белками SUMO и/или происходит протеасомная деградация белков, помеченных убиквитином . Ниже в таблице приведены характеристики известных ядерных телец-сирот .

Ядерное тельце Описание Типичный размер (в мкм) Количество на ядро
Кластосома Концентрирует протеасомные комплексы 20S и 19S и белки, связанные с убиквитином. Обнаруживается главным образом тогда, когда стимулируется активность протеасом, и разбирается при ингибировании активности протеасом. 0,2—1,2 0—3
Тельце деления ( англ. cleavage body ) Обогащено факторами деления и , а также белком , содержащим . Обнаруживается в основном в S-фазе , ингибирование транскрипции на него не влияет. 0,2—1,0 1—4
Домен OPT Обогащён факторами транскрипции и PTF. Частично колокализуется с сайтами транскрипции. Обнаруживается в основном в поздней G1-фазе , разбирается при ингибировании транскрипции. 1,0—1,5 1—3
Тельце Polycomb Обнаруживается в клетках человека и дрозофилы, обогащено белком PcG . У человека накапливает белки RING1 , , HPC, может быть связано с околоцентромерным гетерохроматином. 0,3—1,0 12—16
Тельце Sam68 Накапливает белок Sam68 и схожие с ним белки SLM-1 и SLM-2. Разбирается при ингибировании транскрипции. Вероятно, обогащено РНК. 0,6—1,0 2—5
Тельце SUMO Обогащено белками SUMO и SUMO-конъюгирующим ферментом . Концентрирует транскрипционные факторы p CREB , CBP , . 1—3 1—3

Примечания

  1. Кассимерис Л., Лингаппа В. Р., Плоппер Д. . Клетки по Льюину. — М. : Лаборатория знаний, 2016. — 1056 с. — ISBN 978-5-906828-23-1 . — С. 410.
  2. , p. 311, 313.
  3. Weber S. C. (англ.) // Current opinion in cell biology. — 2017. — Vol. 46. — P. 62—71. — doi : . — . [ ]
  4. , p. 312.
  5. , p. 312—315.
  6. Arifulin E. A. , Sorokin D. V. , Tvorogova A. V. , Kurnaeva M. A. , Musinova Y. R. , Zhironkina O. A. , Golyshev S. A. , Abramchuk S. S. , Vassetzky Y. S. , Sheval E. V. (англ.) // Chromosoma. — 2018. — 5 October. — doi : . — . [ ]
  7. Arifulin E. A. , Musinova Y. R. , Vassetzky Y. S. , Sheval E. V. (англ.) // Biochemistry. Biokhimiia. — 2018. — June ( vol. 83 , no. 6 ). — P. 690—700 . — doi : . — . [ ]
  8. , p. 315—316.
  9. , p. 316.
  10. , p. 316—317.
  11. , p. 317—318.
  12. , p. 318.
  13. Larson A. G. , Narlikar G. J. (англ.) // Biochemistry. — 2018. — 1 May ( vol. 57 , no. 17 ). — P. 2540—2548 . — doi : . — . [ ]
  14. Staněk D. , Fox A. H. (англ.) // Current opinion in cell biology. — 2017. — Vol. 46. — P. 94—101. — doi : . — . [ ]
  15. Sawyer I. A. , Bartek J. , Dundr M. (англ.) // Seminars In Cell & Developmental Biology. — 2018. — 25 July. — doi : . — . [ ]
  16. Sztacho M. , Sobol M. , Balaban C. , Escudeiro Lopes S. E. , Hozák P. (англ.) // Advances In Biological Regulation. — 2018. — 17 September. — doi : . — . [ ]
  17. , p. 319.
  18. , p. 319—320.
  19. , p. 320—322.
  20. Hernandez-Verdun D. // Histochemistry and Cell Biology. — 2006. — Vol. 125, no. 1-2. — P. 127—137. — doi : . — . [ ]
  21. Lamond A. I., Sleeman J. E. // Current Biology. — 2003. — Vol. 13, no. 21. — P. 825—828. — . [ ]
  22. Lodish H., Berk A., Matsudaira P., Kaiser C. A., Krieger M., Scott M. P., Zipursky S. L., Darnell J. . Molecular Cell Biology. 5th edition. — N. Y. : W. H. Freeman, 2004. — ISBN 0-7167-2672-6 .
  23. , p. 235.
  24. , p. 239.
  25. Dundr M., Misteli T. // The Biochemical Journal. — 2001. — Vol. 356, Pt. 2. — P. 297—310. — . [ ]
  26. Lallemand-Breitenbach V., de Thé H. // Cold Spring Harbor Perspectives in Biology. — 2010. — Vol. 2, no. 5. — P. a000661. — doi : . — . [ ]
  27. Lamond A. I., Spector D. L. // Nature Reviews. Molecular Cell Biology. — 2003. — Vol. 4, no. 8. — P. 605—612. — doi : . — . [ ]
  28. Tripathi K., Parnaik V. K. // Journal of Biosciences. — 2008. — Vol. 33, no. 3. — P. 345—354. — . [ ]
  29. Handwerger K. E., Gall J. G. // Trends in Cell Biology. — 2006. — Vol. 16, no. 1. — P. 19—26. — doi : . — . [ ]
  30. . // UniProt: UniProtKB. Дата обращения: 30 августа 2013. 13 ноября 2012 года.
  31. Gall J. G., Bellini M., Wu Zheng’an, Murphy C. // Molecular Biology of the Cell. — 1999. — Vol. 10, no. 12. — P. 4385—4402. — . [ ]
  32. Matera A. G., Terns R. M., Terns M. P. // Nature Reviews. Molecular Cell Biology. — 2007. — Vol. 8, no. 3. — P. 209—220. — doi : . — . [ ]
  33. Fox A. H., Lam Yun Wah, Leung A. K. L., Lyon C. E., Andersen J., Mann M., Lamond A. I. // Current Biology. — 2002. — Vol. 12, no. 1. — P. 13—25. — . [ ]
  34. Fox A. H., Bond C. S., Lamond A. I. // Molecular Biology of the Cell. — 2005. — Vol. 16, no. 11. — P. 5304—5315. — doi : . — . [ ]
  35. , p. 274.
  36. Pollock C., Huang Sui. // Journal of Cellular Biochemistry. — 2009. — Vol. 107, no. 2. — P. 189—193. — doi : . — . [ ]
  37. , p. 264.
  38. , p. 288.
  39. , p. 300.
  40. , p. 301.

Литература

  • The Nucleus / Tom Misteli, David L. Spector. — New York: Cold Spring Harbor Perpectives in Biology, 2011. — 463 p. — ISBN 978-0-87969-894-2 .
Источник —

Same as Ядерные тельца