Interested Article - Трапеция

Трапе́ция (от др.-греч. τραπέζιον — « столик » от τράπεζα — « стол ») — выпуклый четырёхугольник , у которого две стороны параллельны , а две другие стороны не параллельны . Часто в определении трапеции опускают последнее условие (см. ниже). Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.

Варианты определения

Существует и другое определение трапеции.

Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны . Согласно этому определению, параллелограмм и прямоугольник — частные случаи трапеции. Однако при использовании такого определения большинство признаков и свойств равнобедренной трапеции перестают быть верными (так как параллелограмм становится её частным случаем). Приведённые в разделе формулы верны для обоих определений трапеции.

Связанные определения

Элементы трапеции

Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
  • Параллельные противоположные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами .
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Углом при основании трапеции называется её внутренний угол, образованный основанием с боковой стороной.

Виды трапеций

  • Трапеция, у которой боковые стороны равны, называется равнобедренной трапецией (реже равнобокой или равнобочной трапецией).
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной .

Свойства

  • Сумма углов, прилежащих к боковой стороне трапеции, равна (как сумма двух внутренних односторонних углов при параллельных прямых, содержащих основания трапеции, и секущей, содержащей боковую сторону).
  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.
  • Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции.
  • В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
  • Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
  • Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен оснований.
  • Диагонали трапеции делят её на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, являются равновеликими [имеют одинаковую площадь].
  • Если отношение оснований равно , то отношение площадей треугольников, прилежащих к основаниям, равно .
  • Высота трапеции определяется формулой:
где — большее основание, — меньшее основание, и — боковые стороны.
  • Диагонали трапеции и связаны со сторонами соотношением:
Их можно выразить в явном виде:
Если, наоборот, известны боковые стороны и диагонали, то основания выражаются формулами:
а при известных основаниях и диагоналях боковые стороны следующие:
Если же известна высота , то

Неравенства для отрезков в трапеции

  • Неравенство для сторон трапеции сумма боковых сторон больше разности бо́льшего и меньшего оснований трапеции , т. е. если — трапеция ( ), причём , то выполняется неравенство: .
  • Неравенство для диагоналей трапеции сумма диагоналей больше суммы оснований трапеции , т. е. если — трапеция ( ), причём , то выполняется неравенство: .

Теорема о четырёх точках трапеции

Середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон трапеции лежат на одной прямой .

Равнобедренная трапеция

Трапеция является равнобедренной тогда и только тогда, когда выполнено любое из следующих эквивалентных условий:

  • прямая, которая проходит через середины оснований, перпендикулярна основаниям (то есть является осью симметрии трапеции) ;
  • высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований;
  • углы при любом основании равны;
  • сумма противоположных углов равна 180°;
  • длины диагоналей равны;
  • диагонали трапеции образовывали с одним и тем же основание равные углы;
  • из каждой вершины одного основания другое основание было видно под одним и тем же углом ;
  • вокруг этой трапеции можно описать окружность;
  • вершинами этой трапеции также являются вершины некоторого антипараллелограмма .

Кроме того

  • если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Если — равнобочная трапеция ( , ), причём — диагональ трапеции, то .

Вписанная и описанная окружность

  • Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность . Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
  • В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
  • Если трапецию можно вписать в окружность — то она равнобедренная.
  • Радиус описанной окружности равнобедренной трапеции: [ источник не указан 3115 дней ]
где — боковая сторона, — бо́льшее основание, — меньшее основание, — диагонали равнобедренной трапеции.
  • Если , то в равнобедренную трапецию можно вписать окружность радиуса
  • Если в трапецию вписана окружность с радиусом , и она делит боковую сторону точкой касания на два отрезка — и — то .

Площадь

Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников .
  • В случае, если и — основания и — высота, формула площади :
  • В случае, если — средняя линия и — высота, формула площади :

Примечание: Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:

  • Формула, где — основания, и — боковые стороны трапеции:
или
  • Средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как
  • По свойству треугольников и в трапеции :


  • Площадь трапеции равна произведению одной из боковых сторон на длину перпендикуляра, проведённого из середины другой боковой стороны к прямой, содержащей первую боковую сторону.

Формулы площади равнобедренной трапеции

  • Площадь равнобедренной трапеции с радиусом вписанной окружности, равным , и углом при основании :
  • Площадь равнобедренной трапеции через диагональ , боковую сторону и угол при основании :
  • Площадь равнобедренной трапеции:
где — боковая сторона, — бо́льшее основание, — меньшее основание, — угол между бо́льшим основанием и боковой стороной .
  • Площадь равнобедренной трапеции через её стороны
  • Площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна квадрату её высоты:

В этом случае средняя линия совпадает по длине с высотой трапеции, т. е. .

История

Слово «трапеция» происходит от греческого слова др.-греч. τραπέζιον «столик» (уменьш. от τράπεζα «стол»), означающего стол. В русском языке от этого слова происходит слово «трапеза» (еда).

Примечания

  1. . — М. : Советская энциклопедия , 1988. — С. .
  2. . Дата обращения: 6 июля 2015. 9 июля 2015 года.
  3. . Дата обращения: 6 июля 2015. 19 апреля 2015 года.
  4. Коллектив авторов. . — Litres, 2015-09-03. — С. 82. — 482 с. — ISBN 9785457410022 .
  5. М. И. Сканави. . — 2013. — С. 437. — 611 с. — ISBN 9785458254489 .
  6. . 16 сентября 2015 года.
  7. от 1 марта 2021 на Wayback Machine , § 99.
  8. Эквивалентная формулировка : отрезки, соединяющие середины противоположных сторон трапеции, были взаимно перпендикулярны .
  9. Следствие . В случае перпендикулярности диагоналей боковым сторонам трапеция является равнобедренной .
  10. Комарова В. В. Экзаменационные вопросы и ответы. Геометрия: 9 и 11 выпускные классы. — М. : , 2000. — 448 с. — ISBN 5-7805-0416-4 .
  11. Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. 2-е изд., перераб. и доп. — М.: Наука, 1974. — 592 с.
  12. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов 1986. С. 184
Источник —

Same as Трапеция