Экономический пузырь
- 1 year ago
- 0
- 0
Мыльный пузырь — тонкая многослойная плёнка мыльной воды, наполненная воздухом, обычно в виде сферы с переливчатой поверхностью . Мыльные пузыри обычно существуют лишь несколько секунд и лопаются при прикосновении или самопроизвольно. Их часто используют в своих играх дети .
Из-за недолговечности мыльный пузырь стал синонимом чего-то привлекательного, но бессодержательного и недолговечного. Иногда акции на новых рынках сравнивают с мыльными пузырями, в случае искусственного раздутия их ценности их называют «дутыми».
Плёнка пузыря состоит из тонкого слоя воды, заключённого между двумя слоями молекул, чаще всего мыла. Эти слои содержат в себе молекулы, одна часть которых является гидрофильной , а другая гидрофобной . Гидрофильная часть привлекается тонким слоем воды, в то время как гидрофобная, наоборот, выталкивается. В результате образуются слои, защищающие воду от быстрого испарения, а также уменьшающие поверхностное натяжение .
Пузырь существует потому, что поверхность любой жидкости (в данном случае воды) имеет некоторое поверхностное натяжение , которое делает поведение поверхности похожим на поведение чего-нибудь эластичного . Однако пузырь, сделанный только из воды, нестабилен и быстро лопается. Для того, чтобы стабилизировать его состояние, в воде растворяют какие-нибудь поверхностно-активные вещества , например мыло. Распространённое заблуждение состоит в том, что мыло увеличивает поверхностное натяжение воды. На самом деле оно делает как раз обратное: уменьшает поверхностное натяжение примерно до трети от поверхностного натяжения чистой воды. Когда мыльная плёнка растягивается, концентрация мыльных молекул на поверхности уменьшается, увеличивая при этом поверхностное натяжение . Таким образом мыло избирательно усиливает слабые участки пузыря, не давая им растягиваться дальше. В дополнение к этому, мыло предохраняет воду от испарения, тем самым делая время жизни пузыря ещё больше.
Сферическая форма пузыря также получается за счёт поверхностного натяжения . Силы натяжения формируют сферу потому, что сфера имеет наименьшую площадь поверхности при данном объёме. Эта форма может быть существенно искажена потоками воздуха и самим процессом надувания пузыря. Однако, если оставить пузырь плавать в спокойном воздухе, его форма очень скоро станет близкой к сферической.
Имеются свидетельства замерзания мыльных пузырей при температуре около −10 °C . В целях предотвращения разрушения пузыря при замерзании, рекомендуется надувать мыльный пузырь воздухом уличной температуры (например, быстрым перемещением кольца), а не теплым воздухом изо рта.
Если надуть пузырь при температуре −15 °C , то он замёрзнет при соприкосновении с поверхностью. Воздух, находящийся внутри пузыря, будет постепенно просачиваться наружу и в конце концов пузырь разрушится под действием собственного веса.
При температуре −25 °C пузыри замерзают в воздухе и могут разбиться при ударе о землю. Если при такой температуре надуть пузырь тёплым воздухом, то он замёрзнет почти в идеальной сферической форме, но по мере того, как воздух будет охлаждаться и уменьшаться в объёме, пузырь может частично разрушиться, и его форма будет искажена. Пузыри, надутые при такой температуре, всегда будут небольшими, так как они будут быстро замерзать, и если продолжать их надувать, то они лопнут.
Когда два пузыря соединяются, они принимают форму с наименьшей возможной площадью поверхности. Их общая стенка будет выпячиваться внутрь большего пузыря, так как меньший пузырь имеет бо́льшую среднюю кривизну и большее внутреннее давление. Если пузыри одинакового размера, их общая стенка будет плоской.
Правила, которым подчиняются пузыри при соединении, были экспериментально установлены в XIX веке бельгийским физиком Жозефом Плато и доказаны математически в 1976 г. ( ).
Пузыри, не подчиняющиеся этим правилам, в принципе могут образовываться, однако будут сильно неустойчивыми и быстро примут правильную форму либо разрушатся. Пчёлы , которые стремятся уменьшить расход воска , соединяют соты в ульях также под углом 120° , формируя, тем самым, правильные шестиугольники .
Переливчатые «радужные» цвета мыльных пузырей наблюдаются вследствие интерференции световых волн и определяются толщиной мыльной плёнки.
Когда луч света проходит сквозь тонкую плёнку пузыря, часть его отражается от внешней поверхности, формируя первый луч, в то время как другая часть проникает внутрь плёнки и отражается от внутренней поверхности, образуя второй луч. Наблюдаемый в отражении цвет излучения определяется интерференцией этих двух лучей. Поскольку каждый проход света через плёнку создаёт сдвиг по фазе пропорциональный толщине плёнки и обратно пропорциональный длине волны, результат интерференции зависит от двух величин. Отражаясь, некоторые волны складываются в фазе, а другие в противофазе, и в результате белый свет, сталкивающийся с плёнкой, отражается с оттенком, зависящим от толщины плёнки.
По мере того, как плёнка становится тоньше из-за испарения воды, можно наблюдать изменение цвета пузыря. Более толстая плёнка убирает из белого света красный компонент, делая тем самым оттенок отражённого света сине-зелёным. Более тонкая плёнка убирает жёлтый (оставляя синий свет), затем зелёный (оставляя пурпурный), и затем синий (оставляя золотисто-жёлтый). В конце концов стенка пузыря становится тоньше, чем длина волны видимого света, все отражающиеся волны видимого света складываются в противофазе и мы перестаем видеть отражение совсем (на тёмном фоне эта часть пузыря выглядит «чёрным пятном»). Когда это происходит, толщина стенки мыльного пузыря меньше 25 нанометров , и пузырь, скорее всего, скоро лопнет.
Эффект интерференции также зависит от угла, с которым луч света сталкивается с плёнкой пузыря. Таким образом, даже если бы толщина стенки была везде одинаковой, мы бы всё равно наблюдали различные цвета из-за движения пузыря. Но толщина пузыря постоянно меняется из-за гравитации, которая стягивает жидкость в нижнюю часть так, что обычно мы можем наблюдать полосы различного цвета, которые движутся сверху вниз.
Мыльные пузыри также являются физической иллюстрацией проблемы минимальной поверхности , сложной математической задачи. Например, несмотря на то, что с 1884 года известно, что мыльный пузырь имеет минимальную площадь поверхности при заданном объёме, только в 2000 году было доказано , что два объединённых пузыря также имеют минимальную площадь поверхности при заданном объединённом объёме. Эта задача была названа теоремой двойного пузыря . Утверждение о том, что тройной пузырь также имеет минимальную площадь поверхности, было доказано лишь в 2022 году .
С развитием геометрической теории меры удалось доказать, что оптимальная поверхность будет кусочно-гладкой , а не бесконечно изломанной.
Плёнка мыльного пузыря всегда стремится минимизировать свою площадь поверхности. Это связано с тем, что свободная энергия жидкой плёнки пропорциональна площади её поверхности и стремится к достижению минимума:
Для отдельного пузыря минимальная по площади поверхность — сфера, однако несколько объединённых пузырей имеют гораздо более сложную форму.
Шоу мыльных пузырей — это и развлечение, и искусство. Создание эффектных пузырей требует от артиста высокого уровня мастерства, а также способности приготовить мыльный раствор идеального качества. Некоторые художники создают гигантские пузыри, часто обертывающие объекты или даже людей. Другим удаётся создать пузыри в форме куба , тетраэдра и других фигур. Часто, для усиления визуального эффекта, пузыри заполняют дымом или горючим газом, сочетают с лазерной иллюминацией или открытым огнём.
2 марта 2017 года россиянка Людмила Дарьина установила рекорд « Книги рекордов Гиннесса » «Наибольшее количество человек внутри мыльного пузыря» — 374 человека. 30 января 2018 года этот рекорд был внесён и в « Книгу рекордов России »] как мировой.
Плато, Жозеф один из первых в Европе научно изучал фигуры из мыльных пленок, описал результаты и сформулировал проблему, носящую его имя: проблему Плато . В простейшей формулировке её можно сформулировать следующим образом: «найти поверхность наименьшей площади, ограниченную данным замкнутым пространственным контуром» . Он же и предложил её физическое решение с помощью мыльных плёнок.