Interested Article - Каталитическая триада

Фермент протеаза TEV содержит пример каталитической триады аминокислотных остатков (красный) в своем активном сайте . Триада состоит из аспартата ( кислоты ), гистидина ( основания ) и серина ( нуклеофила ). Субстрат (черный) связан участком связывания, чтобы ориентировать её рядом с триадой. ( PDB )

Каталитическая триада — это набор из трех скоординированных аминокислот, которые можно найти в активном центре некоторых ферментов . Каталитические триады чаще всего встречаются в ферментах гидролаз и трансфераз (например, протеазы , , эстеразы , ацилазы, липазы и β-лактамазы ). Триада кислота- основание- нуклеофил является распространенным мотивом для образования нуклеофильного остатка для . Остатки образуют сеть реле заряда для поляризации и активации нуклеофила, который атакует субстрат , образуя ковалентный промежуточный продукт, который затем гидролизуется с высвобождением продукта и регенерацией свободного фермента. Нуклеофилом чаще всего является аминокислота серин или цистеин , но иногда треонин или даже селеноцистеин . Трехмерная структура фермента объединяет триадные остатки в точной ориентации, даже если они могут находиться далеко друг от друга в последовательности ( первичная структура ).

Помимо дивергентной эволюции функции (и даже нуклеофила триады), каталитические триады демонстрируют одни из лучших примеров конвергентной эволюции . Химические ограничения катализа привели к тому, что одно и то же строение каталитических центров развилось независимо по крайней мере в 23 отдельных суперсемействах . Вследствие этого, их механизм действия является одним из наиболее изученных в биохимии .

История

Ферменты трипсин и химотрипсин были впервые очищены в 1930-х годах. Для них серин был идентифицирован как каталитический нуклеофил (путем модификации диизопропилфторфосфата ) в 1950-х годах. Структура химотрипсина была изучена с помощью рентгеновской кристаллографии в 1960-х годах, что показало ориентацию каталитической триады в активном центре. Другие протеазы, которые были секвенированы и выровнены, чтобы выявить семейство родственных протеаз, теперь называется семейством S1. Одновременно в структурах эволюционно не связанных протеаз папаина и субтилизина были обнаружены аналогичные триады. В конце 1960-х годов был предложен механизм «реле заряда», который подразумевает активацию нуклеофила другими членами триады. Поскольку в 1970-х и 80-х годах с помощью рентгеновской кристаллографии было изучено все больше протеазных структур, были обнаружены гомологичные (например, протеаза TEV ) и аналогичные (например, папаин) триады. Система классификации MEROPS в 1990-х и 2000-х годах начала классифицировать протеазы по структурно связанным суперсемействам ферментов и, таким образом, действует как база данных конвергентной эволюции триад в более чем 20 суперсемействах. Понимание того, как химические ограничения эволюции привели к конвергенции стольких семейств ферментов с одной и той же геометрией триад, появилось в 2010-х годах.

С момента первоначального открытия каталитических триад, их точный каталитический механизм подвергался все более и более детальным исследованиям. В 1990-х и 2000-х годах особое внимание уделялось вопросу о том, способствуют ли водородные связи с низким барьером катализу, или достаточно обычной водородной связи, чтобы объяснить механизм. Огромный объём работ по ковалентному катализу с реле заряда, используемому каталитическими триадами, привел к тому, что этот механизм лучше всего охарактеризован во всей биохимии.

Функция

Ферменты, содержащие каталитическую триаду, используют её для одного из двух типов реакций: либо для расщепления субстрата ( гидролазы ), либо для переноса одной части субстрата на второй субстрат ( трансферазы ). Триады представляют собой взаимозависимый набор остатков в активном центре фермента и действуют совместно с другими остатками (например, сайт связывания и оксианионное отверстие) для достижения нуклеофильного катализа. Эти остатки триады действуют вместе, чтобы сделать нуклеофильный элемент высокореактивным, образуя ковалентный промежуточный продукт с субстратом, который затем растворяется для завершения катализа.

Механизм

Каталитические триады выполняют используя остаток в качестве нуклеофила. Реакционная способность нуклеофильного остатка увеличивается за счет функциональных групп других членов триады. Нуклеофил поляризован и ориентирован основанием, которое само связывается и стабилизируется кислотой.

Катализ проводится в два этапа. Во-первых, активированный нуклеофил атакует карбонильный углерод и заставляет карбонильный кислород принять электронную пару, что приводит к тетраэдрическому промежуточному соединению . Наращивание отрицательного заряда на этом промежуточном продукте обычно стабилизируется оксианионной дырой в активном центре. Промежуточный продукт затем коллапсирует обратно до карбонила, выбрасывая первую половину субстрата, но оставляя вторую половину все ещё ковалентно связанной с ферментом в качестве промежуточного ацил-фермента. Хотя общий кислотный катализ разрушения первого и второго тетраэдрических интермедиатов может происходить по пути, показанному на диаграмме, доказательства, подтверждающие этот механизм с химотрипсином , были оспорены.


Вторая стадия катализа — это разделение промежуточного ацил-фермента путем атаки на второй субстрат. Если этот субстрат — вода, то результатом будет гидролиз; если это органическая молекула, то результатом является перенос этой молекулы на первый субстрат. Атака на второй субстрат формирует новый тетраэдрический промежуточный продукт, который распадается путем выброса нуклеофила фермента, высвобождения второго продукта и регенерации свободного фермента.

Общий механизм реакции, катализируемой каталитической триадой (черный): нуклеофильное замещение на субстрате (красный) вторым субстратом (синий). Во-первых, нуклеофил фермента (X) атакует карбонил, образуя ковалентно связанный ацил-ферментный промежуточный продукт. Этот промежуточный продукт затем атакуется нуклеофилом второго субстрата (X'). Если вторым нуклеофилом является гидроксил воды, результатом является гидролиз, в противном случае результатом является X'.

Идентичность членов триады

Каталитическая триадная система передачи заряда, обычно встречающаяся в протеазах. Кислотный остаток (обычно глутамат или аспартат ) выравнивает и поляризует основание (обычно гистидин ), которое активирует нуклеофил (часто серин или цистеин , иногда треонин ). Триада уменьшает pK a нуклеофильного остатка, который затем атакует субстрат. положительно заряженных обычно основных амидов (иногда боковых цепей) стабилизирует накопление заряда в переходном состоянии подложки.

Нуклеофил

Боковая цепь нуклеофильного остатка выполняет ковалентный катализ на субстрате . электронов, присутствующая на кислороде или сере, атакует электроположительный карбонильный углерод. 20 природных биологических аминокислот не содержат достаточно нуклеофильных функциональных групп для многих сложных каталитических реакций . Включение нуклеофила в триаду увеличивает его реакционную способность для эффективного катализа. Наиболее часто используемые нуклеофилы — это гидроксил (ОН) серина и тиол / тиолат-ион (SH / S - ) цистеина . Альтернативно, треониновые протеазы используют вторичный гидроксил треонина , однако из-за стерической помехи дополнительной метильной группы боковой цепи такие протеазы используют свой N -концевой амид в качестве основания, а не отдельную аминокислоту.

Использование кислорода или серы в качестве нуклеофильного атома вызывает незначительные различия в катализе. По сравнению с кислородом дополнительная d-орбиталь серы делает её больше (на 0,4 Å) и мягче, позволяет ей образовывать более длинные связи (d C-X и d X-H больше в 1,3 раза) и дает более низкое значение p K a (на 5 единиц). Следовательно, серин в большей степени, чем цистеин, зависит от оптимальной ориентации членов кислотно-основной триады для снижения его p K a для достижения согласованного депротонирования с катализом. Низкий p K a цистеина работает для него невыгодно при разделении первого тетраэдрического промежуточного соединения, поскольку непродуктивное обращение исходной нуклеофильной атаки является более благоприятным продуктом распада. Таким образом, основание триады предпочтительно ориентировано на протонирование амида уходящей группы, чтобы гарантировать, что он выбрасывается, оставляя серу фермента ковалентно связанной с N-концом субстрата. Наконец, разделение ацил-фермента (для высвобождения С-конца субстрата) требует повторного протонирования серина, тогда как цистеин может уйти в виде S - . С точки зрения стерического эффекта сера цистеина также образует более длинные связи и имеет более объемный радиус Ван-дер-Ваальса и при мутации в серин может быть захвачен в непродуктивных ориентациях в активном центре.

Очень редко атом селена аминокислоты селеноцистеина используется в качестве нуклеофила. Депротонированное состояние Se - сильно предпочтительнее в каталитической триаде.

Основание

Поскольку никакие природные аминокислоты не являются сильно нуклеофильными, основание в каталитической триаде поляризует и депротонирует нуклеофил для увеличения его реакционной способности. Кроме того, он протонирует первый продукт, чтобы способствовать его уходу из группы.

Основанием чаще всего является гистидин, поскольку его p K a позволяет осуществлять эффективный щелочной катализ, водородную связь с кислотным остатком и депротонирование нуклеофильного остатка. β-лактамазы, такие как ТЕМ-1, используют остаток лизина в качестве основания. Поскольку p K a лизина очень велико (p K a = 11), глутамат и несколько других остатков действуют как кислота, стабилизируя его депротонированное состояние во время каталитического цикла. Треониновые протеазы используют свой N- концевой амид в качестве основания, поскольку стерическое вытеснение метила каталитического треонина препятствует тому, чтобы другие остатки находились достаточно близко друг к другу.

Кислота

Кислотный член триады образует водородную связь с основным остатком. Это выравнивает основный остаток, ограничивая вращение его боковой цепи, и поляризует его, стабилизируя его положительный заряд. Две аминокислоты имеют кислые боковые цепи при физиологическом pH (аспартат или глутамат) и поэтому наиболее часто используются для этого члена триады. Цитомегаловирусная протеаза использует пару гистидинов, один как обычно, а другой как кислоту. Второй гистидин не является такой эффективной кислотой, как более распространенный аспартат или глутамат, что приводит к более низкой каталитической эффективности. В некоторых ферментах кислотный член триады менее необходим, а некоторые действуют только как диада. Например, папаин использует аспарагин в качестве своего третьего члена триады, который ориентирует гистидиновое основание, но не действует как кислота. Точно так же протеаза вируса гепатита А содержит упорядоченную воду в том месте, где должен находиться кислотный остаток.

Примеры триад

Примеры аминокислотных остатков, используемых в различных комбинациях в различных ферментах для образования каталитической триады для гидролиза. Слева расположены члены триады нуклеофилов, оснований и кислот. Справа расположены различные субстраты с расщепленной связью, обозначенной парой ножниц. Две различные связи в бета-лактамах могут быть расщеплены (1 пенициллинацилазой и 2 бета-лактамазой ).

Сер-Гис-Асп

Мотив серин-гистидин-аспартат является одним из наиболее подробно описанных каталитических мотивов в биохимии. Примером этой триады является модельная сериновая протеаза из суперсемейства PA, которая использует свою триаду для гидролиза белковых скелетов. Аспартат связан водородными связями с гистидином, увеличивая p K a его имидазольного азота с 7 до примерно 12. Это позволяет гистидину действовать как мощная общая основа и активировать сериновый нуклеофил. Он также имеет оксианионное отверстие, состоящее из нескольких амидов основной цепи, которое стабилизирует накопление заряда на промежуточных соединениях. Основание гистидина помогает первой уходящей группе, отдавая протон, а также активирует гидролитический водный субстрат, отводя протон, поскольку оставшийся ОН - атакует промежуточный ацил-фермент.

Та же самая триада также конвергентно эволюционировала в α / β гидролазах, таких как некоторые липазы и эстеразы , однако ориентация членов триады обратная. Кроме того, было обнаружено, что ацетилгидролаза головного мозга (которая имеет ту же форму, что и небольшой G-белок ) также имеет эту триаду. Эквивалентная триада Сер-Гис-Глу используется в ацетилхолинэстеразе .

Цис-Гис-Асп

Вторая наиболее изученная триада — это мотив цистеин-гистидин-аспартат. Этот набор триад используют несколько семейств цистеиновых протеаз и папаин . Триада действует аналогично триадам сериновых протеаз с некоторыми заметными отличиями. Из-за низкого p K a цистеина важность Асп для катализа варьируется, и некоторые цистеиновые протеазы эффективно являются Цис-Гис-диадами (например, протеазой вируса гепатита A ), тогда как в других цистеин депротонируется ещё до начала катализа (например, папаин). Эта триада также используется некоторыми амидазами, такими как N-гликаназа, для гидролиза непептидных связей CN.

Сер-Гис-Гис

Триада цитомегаловирусной протеазы использует гистидин в качестве членов как кислотной, так и основной триады. Удаление кислотного гистидина приводит только к 10-кратной потере активности (по сравнению с более чем 10 000-кратной, когда аспартат удаляется из химотрипсина). Эта триада была интерпретирована как возможный способ создания менее активного фермента для контроля скорости расщепления.

Сер-Глу-Асп

Необычная триада обнаружена в протеазах селдолизина. Низкое значение p K a глутаматкарбоксилатной группы означает, что она действует как основание в триаде только при очень низком pH. Предполагается, что эта триада является адаптацией к специфической среде, такой как кислые горячие источники (например, ) или клеточные лизосомы (например, ).

Цис-Гис-Сер

Эндотелиальная протеаза использует цистеин в качестве нуклеофила, но серин для координации гистидинового основания. Несмотря на то, что серин является слабой кислотой, он по-прежнему эффективен в ориентации гистидина в каталитической триаде. Некоторые гомологи альтернативно содержат треонин вместо серина в кислотном месте.

Тре-N конц , Сер-N конц и Цис-N конц

Треониновые протеазы, такие как субъединица протеасомы и орнитинацилтрансферазы используют вторичный гидроксил треонина аналогично использованию первичного гидроксила серина. Однако из-за стерического вмешательства дополнительной метильной группы треонина основным членом триады являетвой амид, который поляризует упорядоченную воду, которая, в свою очередь, депротонирует каталитический гидроксил для увеличения его реакционной способности. Точно так же существуют эквивалентные конфигурации «только серин» и «только цистеин», такие как пенициллинацилаза G и пенициллинацилаза V которые эволюционно связаны с протеасомными протеазами. Опять же, они используют их N- концевой амид в качестве основания.

Сер- цис Сер-Лиз

Эта необычная триада встречается только в одном суперсемействе амидаз. В этом случае лизин поляризует средний серин. Затем средний серин образует две сильные водородные связи с нуклеофильным серином, чтобы активировать его (одну с гидроксилом боковой цепи, а другую с амидом основной цепи). Средний серин удерживается в необычной цис- ориентации для облегчения точных контактов с двумя другими остатками триады. Триада необычна ещё и тем, что лизин и цис- серин действуют как основание при активации каталитического серина, но один и тот же лизин также выполняет роль кислотного члена, а также устанавливает ключевые структурные контакты.

Sec-Гис-Глу

Редкая, но встречающаяся в природе аминокислота селеноцистеин (Sec) также может быть найдена в качестве нуклеофила в некоторых каталитических триадах. Селеноцистеин похож на цистеин, но содержит атом селена вместо серы. Примером может служить активный центр тиоредоксинредуктазы, который использует селен для восстановления дисульфида в тиоредоксине.

Спроектированные триады

В дополнение к естественным типам каталитических триад, белковая инженерия использовалась для создания вариантов ферментов с ненативными аминокислотами или полностью синтетическими аминокислотами. Каталитические триады также были вставлены в некаталитические белки или имитаторы белков.

Кислородный нуклеофил субтилизина (сериновой протеазы) заменен на серу, селен или теллур . Цистеин и селеноцистеин были вставлены с помощью мутагенеза , тогда как неприродная аминокислота, теллуроцистеин, была вставлена с использованием ауксотрофных клеток, питаемых синтетическим теллуроцистеином. Все эти элементы находятся в 16-м столбце таблицы Менделеева ( халькогены ), поэтому обладают схожими свойствами. В каждом случае изменение нуклеофила уменьшало активность протеазы фермента, но увеличивало другую активность. Нуклеофил серы улучшал активность ферментов трансферазы (иногда называемой субтилигазой). Нуклеофилы селена и теллура превратили фермент в оксидоредуктазу Когда нуклеофил протеазы TEV превращался из цистеина в серин, его протеазная активность сильно снижалась, но могла быть восстановлена путем направленной эволюции.

Некаталитические белки использовались в качестве каркасов, в них были вставлены каталитические триады, которые затем были улучшены путем направленной эволюции. Триада Сер-Гис-Асп была вставлена в антитело а также в ряд других белков. Точно так же имитаторы каталитических триад были созданы в небольших органических молекулах, таких как диарилдиселенид, и отображены на более крупных полимерах, таких как смолы Меррифилда , и наноструктурах.

Дивергентная эволюция

Сложность сети активных центров заставляет остатки, участвующие в катализе (и остатки, контактирующие с ними), быть высоко эволюционно консервативными . Однако есть примеры дивергентной эволюции в каталитических триадах, как в катализируемой реакции, так и в остатках, используемых в катализе. Триада остается ядром активного центра, но эволюционно приспособлена для выполнения различных функций. Некоторые белки, называемые псевдоферментами , выполняют некаталитические функции (например, регуляцию путем ингибирующего связывания) и имеют накопленные мутации, которые инактивируют их каталитическую триаду.

Изменения реакции

Каталитические триады осуществляют ковалентный катализ через промежуточный ацил-фермент. Если этот промежуточный продукт растворяется водой, происходит гидролиз субстрата. Однако, если промежуточное звено растворяется путем атаки на второй субстрат, то фермент действует как трансфераза . Например, атака ацильной группой приводит к реакции ацилтрансферазы. Несколько семейств ферментов трансфераз произошли от гидролаз в результате адаптации, исключающей воду и способствующей атаке второго субстрата. У разных членов суперсемейства α / β-гидролаз триада Сер-Гис-Асп настраивается окружающими остатками на выполнение по меньшей мере 17 различных реакций. Некоторые из этих реакций также достигаются с помощью механизмов, которые изменили образование или разделение промежуточного ацил-фермента, или которые не протекают через промежуточное соединение ацил-фермент.

Кроме того, альтернативный механизм трансферазы был разработан амидофосфорибозилтрансферазой , которая имеет два активных центра. В первом активном центре цистеиновая триада гидролизует глутаминовый субстрат с высвобождением свободного аммиака. Затем аммиак диффундирует через внутренний туннель в ферменте ко второму активному центру, где он переносится на второй субстрат.

Нуклеофильные изменения

Дивергентная эволюция протеаз клана PA для использования разных нуклеофилов в их каталитической триаде. Показаны сериновая триада химотрипсина и цистеиновая триада протеазы TEV. ( PDB )

Дивергентная эволюция остатков активного центра происходит медленно из-за сильных химических ограничений. Тем не менее, некоторые суперсемейства протеаз эволюционировали от одного нуклеофила к другому. Это может произойти, если суперсемейство (с одной и той же структурой белков ) содержит семейства , использующие разные нуклеофилы. Такие нуклеофильные замены происходили несколько раз в течение эволюционной истории, однако механизмы, с помощью которых это происходит, до сих пор неясны.

В суперсемействах протеаз, которые содержат смесь нуклеофилов (например, клан PA), семейства обозначаются их каталитическими нуклеофилами (C = цистеиновые протеазы, S = сериновые протеазы).

Суперсемейства, содержащие группу семейств, в которых используются разные нуклеофилы.
Надсемейство Семьи Примеры
Клан ПА C3, C4, C24, C30, C37, C62, C74, C99 Протеаза TEV ( вирус травления табака )
S1, S3, S6, S7, S29, S30, S31, S32, S39, S46, S55, S64, S65, S75 Химотрипсин ( млекопитающие , например Bos taurus )
Клан PB C44, C45, C59, C69, C89, C95 Предшественник амидофосфорибозилтрансферазы (Homo sapiens )
S45, S63 Предшественник ацилазы пенициллина G (Escherichia coli )
Т1, Т2, Т3, Т6 Протеасома архей, бета-компонент ( Thermoplasma acidophilum )
Клан ПК C26, C56 Гамма-глутамилгидролаза ( Rattus norvegicus )
S51 Дипептидаза Е ( кишечная палочка )
Клан PD C46 Протеин ежа ( Drosophila melanogaster )
N9, N10, N11 Каталитическая субъединица А протонной АТФазы V-типа, содержащая интеин (Saccharomyces cerevisiae )
Клан PE P1 Аминопептидаза DmpA ( Ochrobactrum anthropi )
T5 Предшественник орнитинацетилтрансферазы (Saccharomyces cerevisiae )

Псевдоферменты

Следующим подклассом вариантов каталитических триад являются псевдоферменты , которые имеют триадные мутации, которые делают их каталитически неактивными, но способными функционировать как связывающие или структурные белки. Например, связывающий гепарин белок является членом клана PA, но с глицином вместо нуклеофила и серином вместо гистидина. Точно так же RHBDF1 является гомологом ромбовидных протеаз семейства S54 с аланином вместо нуклеофильного серина. В некоторых случаях псевдоферменты могут все ещё иметь неповрежденную каталитическую триаду, но мутации в остальной части белка снимают каталитическую активность. Клан CA содержит каталитически неактивных членов с мутантными триадами (кальпамодулин имеет лизин вместо цистеинового нуклеофила) и с интактными триадами, но инактивирует мутации в другом месте (тестин крысы сохраняет триаду Цис-Гис-Асн).

Суперсемейства, содержащие псевдоферменты с неактивными триадами
Надсемейство Семьи, содержащие псевдоферменты Примеры
Клан CA C1, C2, C19 Кальпамодулин
CD клан C14 CFLAR
Клан SC S9, S33 Нейролигин
Клан SK S14 ClpR
Клан SR S60 Домен серотрансферрина 2
Клан ST S54 RHBDF1
Клан ПА S1 Азуроцидин 1
Клан PB Т1 PSMB3

Конвергентная эволюция


Эволюционная конвергенция сериновой и цистеиновой протеаз в направлении одной и той же каталитической организации триад кислотно-основного нуклеофила в разных . Показаны триады , , протеазы TEV, и . ( PDB )

Эволюционная конвергенция к одной и той же "N"-концевой организации активного сайта. Показаны каталитический треонин протеасомы и орнитинацетилтрансферазы. ( PDB )

Энзимология протеаз дает одни из самых ярких известных примеров конвергентной эволюции. Такое же геометрическое расположение триадных остатков встречается более чем в 20 отдельных суперсемействах ферментов. Каждое из этих суперсемейств является результатом конвергентной эволюции одного и того же расположения триад в пределах разных структурных складок . Это связано с тем, что существуют ограниченные продуктивные способы организации трех остатков триады, ферментного скелета и субстрата. Эти примеры отражают внутренние химические и физические ограничения ферментов, что приводит эволюции к неоднократному и независимому поиску равноценных решений.

Цистеиновые и сериновые гидролазы

К той же геометрии триады сходятся сериновые протеазы, такие как суперсемейства химотрипсина и субтилизина. Подобная конвергентная эволюция произошла с цистеиновыми протеазами, такими как суперсемейства вирусной C3 протеазы и папаина Эти триады сходятся к почти одинаковому расположению из-за механистического сходства в механизмах протеолиза цистеина и серина.

Семейства цистеиновых протеаз
Суперсемейство Семейство Примеры
CA C1, C2, C6, C10, C12, C16, C19, C28, C31, C32, C33, C39, C47, C51, C54, C58, C64, C65, C66, C67, C70, C71, C76, C78, C83, C85, C86, C87, C93, C96, C98, C101 Папаин ( Карика папайя ) и кальпаин ( Homo sapiens )
CD C11, C13, C14, C25, C50, C80, C84 Каспаза-1 ( Rattus norvegicus ) и сепараза ( Saccharomyces cerevisiae )
CE C5, C48, C55, C57, C63, C79 Аденаин ( аденовирус человека 2 типа)
CF C15 Пироглутамилпептидаза I ( Bacillus amyloliquefaciens )
CL C60, C82 Сортаза А ( золотистый стафилококк )
СМ C18 Пептидаза 2 вируса гепатита С (вирус гепатита С )
CN C9 Пептидаза nsP2 вируса Синдбис (вирус Синдбис)
CO C40 Дипептидилпептидаза VI ( от 17 сентября 2020 на Wayback Machine )
CP C97 Пептидаза DeSI-1 ( Mus musculus )
PA C3, C4, C24, C30, C37, C62, C74, C99 Протеаза TEV ( вирус травления табака )
PB C44, C45, C59, C69, C89, C95 Предшественник амидофосфорибозилтрансферазы (Homo sapiens )
ПК C26, C56 Гамма-глутамилгидролаза ( Rattus norvegicus )
PD C46 Протеин ежа ( Drosophila melanogaster )
PE P1 Аминопептидаза DmpA ( Ochrobactrum anthropi )
неназначенный C7, C8, C21, C23, C27, C36, C42, C53, C75
Семейства сериновых протеаз
Суперсемейство Семейство Примеры
SB S8, S53 Субтилизин ( Bacillus licheniformis )
SC S9, S10, S15, S28, S33, S37 Пролилолигопептидаза ( Sus scrofa )
SE S11, S12, S13 D-Ala-D-Ala пептидаза C ( Escherichia coli )
SF S24, S26 Сигнальная пептидаза I ( Escherichia coli )
SH S21, S73, S77, S78, S80 Ассемблер цитомегаловируса (человеческий вирус герпеса 5)
SJ S16, S50, S69 Lon-A пептидаза ( Escherichia coli )
SK S14, S41, S49 Протеаза Clp ( кишечная палочка )
ТАК S74 Саморасщепляющийся белок CIMCD отростка шейки фага GA-1 (Bacillus phage GA-1)
SP S59 Нуклеопорин 145 ( Homo sapiens )
SR S60 Лактоферрин ( Homo sapiens )
SS S66 Муреинтетрапептидаза LD-карбоксипептидаза ( Pseudomonas aeruginosa )
ST S54 Ромбовидный −1 ( Drosophila melanogaster )
PA S1, S3, S6, S7, S29, S30, S31, S32, S39, S46, S55, S64, S65, S75 Химотрипсин А ( Bos taurus )
PB S45, S63 Предшественник ацилазы пенициллина G (Escherichia coli )
ПК S51 Дипептидаза Е ( кишечная палочка )
PE P1 Аминопептидаза DmpA ( Ochrobactrum anthropi )
неназначенный S48, S62, S68, S71, S72, S79, S81

Треониновые протеазы

Треониновые протеазы используют аминокислоту треонин в качестве каталитического нуклеофила. В отличие от цистеина и серина, треонин является вторичным гидроксилом (то есть имеет метильную группу). Эта метильная группа сильно ограничивает возможные ориентации триады и субстрата, поскольку метил сталкивается либо с основной цепью фермента, либо с гистидиновым основанием. Когда нуклеофил сериновой протеазы был мутирован в треонин, метил занимал несколько положений, большинство из которых препятствовало связыванию субстрата. Следовательно, каталитический остаток треониновой протеазы находится на её N- конце.

Известно, что два эволюционно независимых суперсемейства ферментов с разными белковыми складками используют N -концевой остаток в качестве нуклеофила: суперсемейство PB (протеасомы, использующие складку Ntn) и суперсемейство PE ( ацетилтрансферазы, использующие складку DOM) структура активного сайта в совершенно разных белковых складках указывает на то, что активный центр эволюционировал конвергентно в этих суперсемействах.

Семейства треониновых протеаз
Суперсемейство Семейство Примеры
PB clan T1, T2, T3, T6 Архейская протеасома, бета-компонент ( Thermoplasma acidophilum )
PE clan T5 Орнитинацетилтрансфераза ( Saccharomyces cerevisiae )

См. также

Примечания

Заметки

  1. TEV
  2. Papain
  3. Hepatitis A virus protease
  4. Chymotrypsin
  5. TEV protease
  6. Papain
  7. Cytomegalovirus protease
  8. Seldolisin protease
  9. Vasohibin protease
  10. Proteasome
  11. Ornithine acyltransferases
  12. Penicillin acylase G
  13. Penicillin acylase V
  14. amidophosphoribosyltransferase
  15. Субтилизин
  16. пролилолигопептидаза
  17. Протеасома
  18. OAT

Цитаты

  1. . 23 (9): 347—52. 1998. doi : . PMID .
  2. "Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad". Proc. Natl. Acad. Sci. U.S.A. 110 (8): E653—61. 2013. Bibcode : . doi : . PMID .
  3. Biochemistry. — ISBN 9780716749554 .
  4. Perutz, Max. . — New York : W.H. Freeman and Co, 1992. — ISBN 9780716770213 .
  5. "Proteolytic enzymes past and present: the second golden era. Recollections, special section in honor of Max Perutz". 3 (10): 1734—9. 1994. doi : . PMID .
  6. "Endothelin-induced vasoconstriction and release of atrial natriuretic peptides in the rat". 138 (4): 549—56. 1990. doi : . PMID .
  7. "Amino Acid Sequence in the Region of Diisopropyl Phosphoryl Binding in Dip-Trypsin". 80 (5): 1260—1. 1958. doi : .
  8. "Three-dimensional structure of tosyl-α-chymotrypsin". Nature . 214 (5089): 652—656. 1967. Bibcode : . doi : . PMID .
  9. "Trypsinogen and Chymotrypsinogen as Homologous Proteins". Proc. Natl. Acad. Sci. U.S.A. 52 (4): 884—9. 1964. Bibcode : . doi : . PMID .
  10. "The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships". 92 (2): 225—59. 1975. doi : . PMID .
  11. "Conservation and variability in the structures of serine proteinases of the chymotrypsin family". 258 (3): 501—37. 1996. doi : . PMID .
  12. "Role of a buried acid group in the mechanism of action of chymotrypsin". Nature . 221 (5178): 337—40. 1969. Bibcode : . doi : . PMID .
  13. "Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families". 194 (2): 253—7. 1986. doi : . PMID .
  14. "Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications". Proc. Natl. Acad. Sci. U.S.A. 85 (21): 7872—6. 1988. Bibcode : . doi : . PMID .
  15. "Structural basis for the substrate specificity of tobacco etch virus protease". J. Biol. Chem. 277 (52): 50564—72. 2002. doi : . PMID .
  16. "Evolutionary families of peptidases". 290 (1): 205—18. 1993. doi : . PMID .
  17. "MEROPS: the peptidase database". 38 (supl_1): D227—33. 2010. doi : . PMID .
  18. Frey PA, Whitt SA, Tobin JB (1994). "A low-barrier hydrogen bond in the catalytic triad of serine proteases". Science . 264 (5167): 1927—30. Bibcode : . doi : . PMID .
  19. Ash EL, Sudmeier JL, De Fabo EC, et al. (1997). "A low-barrier hydrogen bond in the catalytic triad of serine proteases? Theory versus experiment". Science . 278 (5340): 1128—32. Bibcode : . doi : . PMID .
  20. Agback P, Agback T (2018). . 8 (1): 10078. Bibcode : . doi : . PMC . PMID .
  21. "The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases". . 55 (3): 711—23. 2004. doi : . PMID .
  22. "Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds". Proc. Natl. Acad. Sci. U.S.A. 93 (24): 13665—70. 1996. Bibcode : . doi : . PMID .
  23. Fersht, A.R. (1971). "Mechanism of the Chymotrypsin-Catalyzed Hydrolysis of Amides. pH Dependence of kc and Km.' Kinetic Detection of an Intermediate". J. Am. Chem. Soc . 93 : 7079—87.
  24. Zeeberg, B (1973). "Concerning a reported change in rate-determining step in chymotrypsin catalysis". J. Am. Chem. Soc . 95 : 2734—5.
  25. "Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration". 17 (12): 2023—37. 2008. doi : . PMID .
  26. "Crystal structures of two engineered thiol trypsins". . 28 (24): 9264—70. 1989. doi : . PMID .
  27. "The basic difference in catalyses by serine and cysteine proteinases resides in charge stabilization in the transition state". 121 (3): 323—6. 1986. doi : . PMID .
  28. "The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state". . 6 (2): 386—94. 2005. doi : . PMID .
  29. "The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme". Proc. Natl. Acad. Sci. U.S.A. 93 (5): 1747—52. 1996. Bibcode : . doi : . PMID .
  30. "Beta-lactamase TEM1 of E. coli. Crystal structure determination at 2.5 A resolution". 299 (2): 135—42. 1992. doi : . PMID .
  31. "A protein catalytic framework with an N-terminal nucleophile is capable of self-activation". Nature . 378 (6555): 416—9. 1995. Bibcode : . doi : . PMID .
  32. "DOM-fold: a structure with crossing loops found in DmpA, ornithine acetyltransferase, and molybdenum cofactor-binding domain". 14 (7): 1902—10. 2005. doi : . PMID .
  33. "Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad". J. Biol. Chem. 289 (22): 15867—79. 2014. doi : . PMID .
  34. "How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes". 5 (10): 6153—6176. 2015. doi : . PMID .
  35. "A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases". 5 (7): 1355—65. 1996. doi : . PMID .
  36. "The PUB domain functions as a p97 binding module in human peptide N-glycanase". J. Biol. Chem. 281 (35): 25502—8. 2006. doi : . PMID .
  37. "Vasohibins: new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad". . 32 (10): 1441—5. 2016. doi : . PMID .
  38. . 27 (1): 37—41. 2007. doi : . PMID .
  39. "Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad". J. Biol. Chem. 278 (27): 24937—43. 2003. doi : . PMID .
  40. . 19 (19): 12343—12354. 2017. Bibcode : . doi : . PMID . из оригинала 24 декабря 2017 . Дата обращения: 9 июля 2021 .
  41. "Minimalist active-site redesign: teaching old enzymes new tricks". Angew. Chem. 46 (18): 3212—36. 2007. doi : . PMID .
  42. "Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution". . 30 (17): 4151—9. 1991. doi : . PMID .
  43. "A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues". Science . 266 (5183): 243—7. 1994. Bibcode : . doi : . PMID .
  44. "Crystal structure of selenosubtilisin at 2.0-A resolution". . 32 (24): 6157—64. 1993. doi : . PMID .
  45. "Semisynthetic tellurosubtilisin with glutathione peroxidase activity". 127 (33): 11588—9. 2005. doi : . PMID .
  46. Handbook of Chalcogen Chemistry. — Vol. Vol. 1: new perspectives in sulfur, selenium and tellurium. — ISBN 9781849736237 .
  47. Electrochemistry of Metal Chalcogenides. — P. 57–75. — ISBN 9783642039669 . — doi : .
  48. "Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease". . 16 (13): 1866—9. 2015. doi : . PMID .
  49. "Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface". 77 (3): 597—603. 2007. doi : . PMID .
  50. "Design of activated serine-containing catalytic triads with atomic-level accuracy". Nat. Chem. Biol. 10 (5): 386—91. 2014. doi : . PMID .
  51. "Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides". 13 (34): 9072—82. 2015. doi : . PMID .
  52. "Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics". 13 (41): 10262—72. 2015. doi : . PMID .
  53. "Simple Design of an Enzyme-Inspired Supported Catalyst Based on a Catalytic Triad". Chem . 2 (5): 732—745. 2017. doi : .
  54. "Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis". . 4 (26): 4605—4611. 2016. doi : . PMID .
  55. "Protein sectors: evolutionary units of three-dimensional structure". . 138 (4): 774—86. 2009. doi : . PMID .
  56. "How far divergent evolution goes in proteins". . 8 (3): 380—387. 1998. doi : . PMID .
  57. "Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies". 70 (1): 209—46. 2001. doi : . PMID .
  58. "Bio-Zombie: the rise of pseudoenzymes in biology". 45 (2): 537—544. 2017. doi : . PMID .
  59. "Sinapoyltransferases in the light of molecular evolution". . 70 (15—16): 1652—62. 2009. doi : . PMID .
  60. "Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families". . 85 (10): 1845—1855. 2017. doi : . PMID .
  61. "Glutamine PRPP amidotransferase: snapshots of an enzyme in action". . 8 (6): 686—94. 1998. doi : . PMID .
  62. "Structure of the allosteric regulatory enzyme of purine biosynthesis". Science . 264 (5164): 1427—33. 1994. Bibcode : . doi : . PMID .
  63. . www.ebi.ac.uk . MEROPS. Дата обращения: 20 декабря 2018. 25 июля 2021 года.
  64. "Pseudoproteases: mechanisms and function". 468 (1): 17—24. 2015. doi : . PMID .
  65. "Sequence and structural differences between enzyme and nonenzyme homologs". . 10 (10): 1435—51. 2002. doi : . PMID .
  66. "Structure of HBP, a multifunctional protein with a serine proteinase fold". 4 (4): 265—8. 1997. doi : . PMID .
  67. "Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling". . 145 (1): 79—91. 2011. doi : . PMID .
  68. "Inactive rhomboid proteins: New mechanisms with implications in health and disease". 60 : 29—37. 2016. doi : . PMID .
  69. "Testins Are Structurally Related to the Mouse Cysteine Proteinase Precursor But Devoid of Any Protease/Anti-Protease Activity". 191 (1): 224—231. 1993. doi : . PMID .
  70. "Why Ser and not Thr brokers catalysis in the trypsin fold". . 54 (7): 1457—64. 2015. doi : . PMID .
Источник —

Same as Каталитическая триада